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Abstract. Clustering data is a commonly used technique to decom-
pose a space of numerical or categorical data into a number of classes.
In particular, clustering categorical data is an integral part of the data
mining area and has received special attention until today. In this pa-
per, it is made a comparison between a novel algorithm for clustering
categorical data (k-histograms) and a well know algorithm for clustering
numerical data (k-means) in the context of voice conversion systems. It
is proposed an adaptation of the k-histograms techniques to deal with
numerical data through quantization. The resulting statistical tool can
model non-gaussian distributions for its use in voice conversion. Objec-
tive and subjective results support the proposed idea.

Key words: k-means, k-histograms, Gaussian Mixture Models, voice
conversion.

1 Introduction

The main goal of clustering a space D is to divide the data X (X € D) into
groups named clusters. The process aims to obtain clusters whose distance be-
tween adjacents clusters is maximized while the radio of each cluster is mini-
mized. There are many studies about clustering techniques and they are widely
applied in differents fields such as image processing, voice recognition, economics,
biology, etc.

The data can be divided in two classes: numerical data and categorical data.
The numerical data has inherent geometric properties, which can be used to
define distance functions between data points. Due to their properties it is easy to
cluster a numerical data space. An example of a clustering method of numerical
data is the K-means algorithm [1].

On the other hand, in many process the majority of data is categorical: it can
be divided into classes and its attributes are not the same than for numerical
data. For example, a categorical attribute is phoneme, whose values include /a/
(e.g.: auto) , /b/ (e.g.: but), /e/ (e.g.;enconding), /Ts/ (e.g.:chat), etc. Due
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to the properties of categorical attributes, the clustering of categorical data is
more complex than numerical data. Examples of clustering of a categorical data
space are k-histograms [2] and k-modes [3].

In this paper we make a comparison between k-means and k-histograms al-
gorithm applied to a specific area of signal processing: voice conversion. The pri-
mary goal of voice conversion systems is to modify the voice of a source speaker
in order to be perceived as if it had been uttered by another specific speaker:
the target speaker. For this purpose, relevant features of the source speaker are
identified and replaced by the corresponding features of the target speaker.

Several voice conversion techniques have been proposed since the problem
was first formulated in 1988. In this year Abe et al. [4] proposed to convert
voices through mapping codebooks created from a parallel training corpus . Since
then, many authors tried to avoid spectral discontinuities caused by the hard
partition of the acoustic space by means of fuzzy classification [5] or frequency
axis warping functions [6].

The appearance of statistical methods based on k-means algorithm, such as
gaussian mizture models (GMM) for spectral envelope transformation was an
important breakthrough in voice conversion [7, 8], because the acoustic space of
speakers was partitioned into overlapping classes and the weighted contribution
of all the classes was considered when transforming acoustic vectors. The spectral
envelopes were successfully converted without discontinuities, but in exchange
the quality of the converted speech was degraded by over-smoothing. This prob-
lem was faced in further works [9-11], while the usage of GMM-based techniques
became almost standard, up to the point that the research was focused on in-
creasing the resolution of GMM-based systems through residual prediction [8,
12,13] in order to improve both the quality scores and the converted-to-target
similarity.

Nevertheless, the problem of creating high-quality voice conversion systems
that could be used in real-life applications has not been completely solved. At
present, there is still a tradeoff between the similarity of converted voices to
target voices and the quality achieved by the different conversion methods.

Erro et al. [14] presented a new voice conversion technique named Weighted
Frequency Warping (WFW), which combined the conversion capabilities of GMM-
based systems and the quality of frequency-warping transformations. The aim of
WEFW was to obtain a better balance between similarity and quality scores than
previous existing methods. At the same time, other authors tried to improve
conventional GMM-based systems by applying frequency-warping functions to
residuals [15]. Both kinds of systems resulted in significant quality improvements
and a slight decrement in the converted-to-target similarity scores, although they
were conceptually different.

In this paper it is implemented a voice conversion system based on k-histograms.
This technique can be employed because the acoustic space of each speaker can
be divided into acoustic classes (phonemes). The main goal is to maximize the
similarity to target speaker without any discontinuities in the sinthesized voice,
reducing the over-smoothing found in other techniques. These techniques de-
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scribed in the literature, produce target features that may not be uttered by the
target speaker. In order to compare the system’s performances, it is included
GMM in the experiments, a well known state-of-the-art technique.

This paper is organized as follows. In Section 2, the cluster algorithms under
study are explained in detail, emphasising the differences. In Section 3, both tech-
niques are implemented. In Section, the results of the objective and subjective
tests are presented and discussed. Finally, the main conclusions are summarized
in Section 5.

2 Description of the Methods Under Study

In this section k-means and k-histograms are described (both clustering tech-
niques), and their use for voice conversion. The first technique is widely used for
numerical data, while the second is a novel approach for categorical data.

2.1 Gaussian Mixture Model (GMM)

This model uses a representation of space through a number of m gaussian dis-
tributions, with their corresponding parameters (mean and standard deviation).
The space is partitioned using the k-means algorithm. Given a set of numeric
objects X; € D and an integer number k, the k-means algorithm searches for a
partition of D into k clusters that minimizes the within groups sum of squared
errors (WGSS). This process can be formulated as the minimization of the func-
tion P(W, Q) with respect to W and @, as shown in equations 1 and 2.

Minimize P(W, Q) = Y > wid(X;, Qi) (1)
=1 i=1
k
Subject to » wiy =1,1<i<n (2)

=1
wiy € {0,1},1<i<n1<I<k

where W is an n x k partition matrix which assigns each vector X; to one
cluster, @ = {Q1,Q2,...,Qr} is a set of objects in the same object domain
(usually known as centroids of the clusters), and d(-, -) is the definition of distance
between vectors.

Then each vector of the space is modeled using a weighted sum of parameters.
GMM is a weighted sum of m component gaussian densities. For the training
stage we need at least two spaces: source and target space. Assuming that a
parallel training corpus of data is available, the vectors of the source space ()
and those of the target space (y;) may be aligned in pairs. Then, a joint-density
GMM may be estimated from vectors z; by means of the EM algorithm [1] ,
where z; is obtained by concatenating z; and y;. The resulting model is given by
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the weights p;, the mean vectors u; and the covariance matrices X; of its m gaus-
sian components. Individual models for each space can be extracted from these
parameters, since the mean vectors and covariance matrices can be decomposed
into

= |14 3)

4
rre 2”}
i = | yye 5 (4)
Once the model is trained, it is possible to calculate the probability that a
source vector x belongs to the i class (each gaussian component represents one
of the m overlapping classes):

aN (z, i, T77)

K3

Pl = S N G, 57)

(5)

where N(-) denotes a gaussian distribution. In conventional GMM-based
methods, for each gaussian component is assigned a statistical transformation
function, so for a given input vector = to be converted, the m probabilities p;(x)
are used as weights for combining the contribution of all classes:

F(x) :Zpi(w)lu?+E?I25”_1(zfﬂf)l (6)

More information about GMMs can be found in [7, 8], with studies about the
dimension of the matrices involved in training. In those papers some simplifica-
tions are proposed to reduce the number of parameters and the estimation error,
such as diagonal covariance matrices.

2.2 K-Histograms (KH)

K-histograms is an interesting approach to cluster categorical data. It is an
expansion of k-means algorithm to cope with categorical data using histograms
and a different cost measure.

Notation Let Ay, ..., A, a set of categorical attributes with domains Dy, ..., Dy,
respectively. Let the dataset S = X, Xo, ..., X, be a set of objects described by
m categorical attributes, Aj,...A,,. The value set V; of A; is a set of values of
A; that are represented in S. For each v € V;, the frequency f,, denoted as
fv, is the number of objects O € X with O. Suppose the number of distinct
attribute values of A; is p;, we define the histogram of A; as the set of pairs
hi = (v1, f1), (v2, f2), ..., (Up;, fp;). The histograms of the data set S is defined
as: H = hl, hg, ceey hm
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Let X,Y be two categorical objects described by m categorical attributes.
The dissimilarity measure between X and Y can be defined by the total mis-
matches of the corresponding attribute values of the two objects. The smaller
the number of mismatches are, the more similar the two objects. Formally,

di(X,Y) 225($jayj) (7)
where
Sas) = {500 5 %) ©)

Given the dataset S = X;,Xs,...X,, and an object Y. The dissimilarity
measure between X and Y can be defined by the average of the sum of the
distances between X; and Y.

> —10(X;,Y)

n

d2(D,Y) = 9)
If we take the histograms H = hq, ho, ...h,, as the compact representation of
the data set S, Eq. 9 can be refined as Eq. 10.

>y ¢(hyy )

n

d3(H,Y) = (10)

where

$(hj,y;) =Y fix6(vi,y;) (11)
=1

From a viewpoint of implementation efficiency, Eq. 10 can be presented in
form of Eq. 12.

iy (g, y;)

d4(H7Y) = n

(12)

where

¥(hj,y;) =Zfz*(1—5(vz,yj)) (13)
=1

Algorithm Equation 13 can be efficiently computed because it requires only the
frequencies of matched attribute value pairs. The previous equations will be used
to explain the clustering algorithm named k-histograms. The main idea of this
method is to replace the means in the k-means algorithm for histograms, defining
a dissimilarity measure between categorical object and histogram. When Eq. 12
is applied, the cost function 14 used in the k-means algorithm is transformed
into:
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m n
Minimize P(W, H) =Y > " w; d(X;, Hy) (14)
=1 i=i

where w;; € W and H; = {h; 1, b2, ..., hi,m } are the counts of each category
(1 to m) in the histogram I.

While the GMM algorithm is initialized using random values, the k-histograms
training stage algorithm is initialized using real values. The initial point of each
class is a real vector. In this way it is possible to obtain a faster convergence
than GMM algorithm.

In the k-histograms algorithm we need to calculate the total cost P against
the whole data set each time when a new H or W is obtained. To make the
computation more efficient, the following algorithm, also adopted in k-modes
algorithm [3], is used instead:

1. Select k initial histograms, one for each cluster.

2. Allocate an object to the cluster whose histogram is the nearest to it accord-
ing to Eq. 12. Update the histogram of the cluster after each allocation.

3. After all objects have been allocated to clusters, retest the dissimilarity of
objects against the current histograms. If an object is found such that its
nearest histogram belongs to another cluster rather than its current one,
reallocate the object to that cluster and update the histograms of both clus-
ters.

4. Repeat 3 until no objects have changed clusters after a full cycle test of the
whole data set.

In this paper it is proposed the use of k-histograms to partition the vectors
of features (LSF parameters) used in voice conversion into sets. The LSF pa-
rameters are discretized to estimate the counts in the histograms of each set.
The source and target LSF vectors are aligned in the training set, and they are
jointly partitioned using k-histograms.

This approach intends to avoid the assumption made in GMM-based voice
conversion system about the possibility to approximate the distribution of each
LSF coefficient through a mixture of gaussians. In this proposal, no assumption
is adopted about a particular distribution of the parameters by estimating it
using histograms.

The conversion between source and target parameters using histograms is
performed using a non-gaussian to non-gaussian mapping via the cumulative
distribution function (CDF) coefficient by coefficient, as shown in Eq. 15.

gi = Fy [Fa (20)] (15)

As shown in Fig. 1, the LSF parameter x; of source speaker is mapped into the
target LSF parameter gj; using the CDF of source and target i** LSF parameter
and j* set (Fy, and F,; respectively). The different available sets are obtained
using the partition of the LSF parameter space via the k-histograms clustering
technique.
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Fig. 1. Example of the conversion of the LSF parameters of source speaker

The decision about the set j used in the transformation of a given source
feature vector x is performed calculating the joint probability of each component
of the vector for each possible set (Eq. 16).

K
p; = Z log(fo,(xi)) (16)

where f, is the probability that the coefficient z; belongs to set j. The vector
belongs to the set j with the highest probability p;.

The parameters estimated using Eq. 15 are used to perform the synthesis
of the target speech. In the next section two voice conversion methods will be
explained based on the LSF transformation shown in this section.

3 Implementation

As stated in Section 1 the main goal of voice conversion is to modify the voice
of a source speaker in order to be perceived as if it had been uttered by another
specific speaker: the target speaker. Hence, it is necessary to convert the features
of source speaker into the features of target speaker. In this section, the steps in
the transformation procedure are explained. This involves to convert the most
relevant features of source speaker into the acoustic space of target speaker based
on the two algorithms under study: k-means and k-histograms.

The features used to transform the acoustic space of source speaker can vary
depending on the used method. Linear Predictor Coefficients (LPC) and the
residual signal are the two more used features. LPC are used to model the vocal
tract of speakers, formed by lungs, trachea, tongue, etc.

LPC are the coefficients of a polynomial of orden n that models a filter
of the vocal tract of the speaker. The residual signal is the signal resulting of
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Fig. 2. Simplified view of a vocal tract

taking the voice signal and perform the inverse filtering through the LPC filter.
Figure 3 shows the LPC model. Although, the presented features are the most
important features for representing the acoustic space of each speaker, there
are other features that must be taken into account, i.e. fundamental frequency,
voiced/unvoiced frame, energy of each frame, etc.

t t

Residual Signal Voice Signal

Fig. 3. Model Proposed of vocal tract

The most widely used model to convert voice consists of taking the
LPC parameters of source speaker to obtain an equivalent representa-
tion more robust to linear transformation: Line Spectral Frequencies
(LSF) [16]. LSF coefficients are transformed into target parameters [7,17] 1.
Other algorithms also converts the residual signal to obtain a better transformed
signal [18].

The idea of our proposal is the use of the methods under study to convert
the LSF source parameters into estimated LSF target parameters. The model
proposed is shown in the Fig. 4. In this model, the source signal is processed
with a pitch-synchronous analysis block [19]. The windowing is made using an
assimetrical Hanning window with a length of two periods of pitch. Next, LPC
parameters are obtained from each frame. The residual signal is obtained using
the inverse filter. On the other hand, the LPC coefficients are transformed to
obtain the LSF source parameters.

Then, the LSF source parameters are converted using the corresponding al-
gorithm (in this case GMM or k-Histograms). A set of estimated LSF target
parameters are obtained. These parameters are used to obtain a set of estimated

! Linear transformation of LPC coefficients may result in unstable converted LPC
coefficients. LSF coefficients do not suffer such effects and ensure stability
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Signal

LPC FILTERING Converted

Source Residual Signal
DATA LPC INVERSE
| SOURCE * ‘TD"ANALYS‘S }_‘ FILTERING
PARAMETERS
LPCs-> LSFs TRANSFORMATION ™1 LSFr-> LPCT

(LSFs-> LSFT)

Fig. 4. System Proposed

LPC target parameters LS Fp. The converted voice is calculated by filtering the
source residual signal using LS Fr.

3.1 Voice conversion using Gaussian Mixtures Model

The GMM voice conversion algorithm uses k-means and has four steps in the
proposed experiments: windowing and parameterization, inverse filtering, pa-
rameter transformation and resynthesis. This proposal is very similar to the
works of Stylianou and Kain [7, 8].

Each utterance is divided into overlapping pitch synchronous frames with
a width of two periods. An assimetrical Hanning window is used to minimize
boundary effects. The parameterization consists of a 20" order LSF vector.
The source excitation (the residual of LPC estimation) is calculated via inverse
filtering with the LPC parameters obtained in each frame.

During the training process source and target LSF parameter vectors are
aligned to obtain the mapping function using the k-means algorithm explained
in Section 2.1. The alignment information is extracted from phone boundaries
provided by a speech recognizer. Inside the boundaries of a frame, the alignment
is linear.

The LSF parameters are transformed using the method proposed in Sec-
tion 2.1. The transformed LSF parameters are converted into LPC coefficients,
and they are used to obtain the target converted voice by filtering the source ex-
citation. The fundamental frequency is transformed using a mean and standard
deviation normalization and the signal is resynthesized using PSOLA [19].

Figure 5 shows the scheme of the proposed model. In this case, the target ex-
citation is preferred to study the accuracy of LSF parameter conversion without
the influence of an inaccurate excitation estimation.

Signal

Target Residual Signal Converted

LPC FILTERING

DATA LPC INVERSE

DATA TEMPORAL GMM TRANSFORMATION
| SOURCE Flm'm'w SIS ALIGNMENT HLPCE > LSFs |" (LSFs->LSFT) [ ]

LSFr-> LPCT

Converted
Parameters

Fig. 5. System based on GMM
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3.2 Voice conversion using K-Histograms

The voice conversion algorithm using k-histograms has the same four steps than
the previous conversion model: windowing and parameterization, inverse filter-
ing, parameter transformation and resynthesis.

During the training process source and target LSF parameter vectors are
aligned to obtain the mapping function using k-histograms. The alignment in-
formation is extracted from phone boundaries provided by a speech recognizer.
Inside the boundaries of a frame, the alignment is linear.

In this approach, the LSF parameters are transformed using the CDF esti-
mated for the set with the highest probability calculated as shown in Eq. 16.
The transformation includes a discretization of the LSF parameters that span
from 0 to w. The degree of discretization is an adjustable parameter and it is
directly related to the amount of available data to estimate the counts of the
histograms.

Figure 6 shows the scheme of our proposal. In this implementation the resid-
ual signal of target speaker is also used for resynthesis.

Signal

Target Residual Signal Converted

LPC FILTERING

DATA LPC INVERSE

K-HISTOGRAMS

DATA TEMPORAL

|SUURCE }—.|TD—ANALVS|S ALIGNMENT HLF‘CS > LSFs|—- TRANSFORMATION |-
(LSFs-> LSFT)

LSFr-> LPCT

Converted
Parameters

Fig. 6. System based on K-Histograms

Although the proposal is an approximation that uses statistical tools likewise
the GMM model [7], we expect to obtain a better conversion with this non-
gaussian approach, without introducing assumptions about the distribution of
the LSF coefficients. The main drawback of our proposal is the discretization of
LSF parameters that introduces noise in the estimation. Subjective experiments
will show the influence of such quantization.

4 Experiments

The audio database used for the experiments contains 200 sentences in Span-
ish, uttered by two male and two female speakers. The sampling frequency was
16 KHz and the average duration of the sentences was 4 seconds. 50% of the
sentences were used to train the conversion functions, while 30% were kept as
development set (to tune model parameters) and 20% were used to perform the
objective test.

One male and one female speaker were chosen as source, and the other two
speakers were used as target, so four different conversion directions were con-
sidered: male to male (m2m), female to female (f2f), male to female (m2f) and
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female to male (f2m). 38 sentences unseen during training were converted and
resynthesized for all methods.

A third voice conversion method was included in the experiments. It consists
of finding the closest feature vector of target speaker in training data to the real
feature vector of target speaker. This voice conversion method based on frame
selection that uses privileged information is named FSOPT. It is a measure of
the highest achievable quality and identity by using the units in the training set
(Optimal Frame Selection: FSOPT).

Signal
Converted

LPC FILTERING

Target Residual Signal
DATA TD-ANALYSIS LPG INVERSE
TARGET FILTERING
|—> LPC-» LSF VITERBI ALGORITHM  |-m LSFT-> LPCT
(LSF > LSFT)

Fig. 7. Architecture of FSOPT

Some results will be shown using box-plots. This representation is an useful
statistical tool to compare several statistical distributions. In our case we will
use it to compare the distribution of the scores of different systems to study the
significance of the differences.

4.1 Objective results

In this work the P distance (see Eq. 17) was used to measure the closeness of
the converted voice to the target voice using the six voice conversion methods
included in the experiments. The P distance was already used in several works
about voice conversion [7].

(17)

The closer the converted parameters () to the parameters of the target
speaker (y) produces that P approaches to one. The distance between source
parameters (z) and target parameters (y) allows to scale the P distance in the
virtual path that goes from source to target parameters.

The P column of Table 1 shows that FSOPT is not as close as expected to
the target voice, due to missing data in the limited training data. The GMM
systems has the highest P score for voice conversion systems, followed by the
proposed systems.

In order to validate the results of the P-score, a second experiment using a
small speaker verification system (SVS) based on a GMM model [20] is made.
MFCC coeflicients are used to code the voice signal using a framing rate of
50H z. Two GMM models were trained using evaluation data to build source
and target models. Given an utterance of a converted voice, these models may
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P SVS |MOS-SMOS-Q
TARGET|1.000| 199.15 — -

FSOPT [0.439| 94.96 3.6 2.8
GMM 0.346| 100.28 2.7 2.1
KH3140 [0.197| 86.04 3.6 3.0
KH314 |0.194| 84.64 3.6 2.8

SOURCE| —oco |—189.64 - —

Table 1. P, SVS, MOS-S and MOS-Q scores for all systems under evaluation, target
and source voices.

be used to establish the closeness to source and target. The subtraction of the log-
likelihood of source and target models is an indicator (score) of the performance
of the conversion. A positive score indicates a good conversion, while a negative
score is an indicator of closeness to source voice model.

The SVS column of Table 1 shows that GMM voice conversion system has
the highest score using the speaker verification system while the other systems
(KH and FSOPT) have the lower scores using this objective score.

The objective results seem poor for the voice conversion systems based on
k-histograms and frame selection. However, the analysis of P and SVS scores
using box-plots and the Wilcoxon test shown no statistically relevant differences
between all voice conversion systems under evaluation except FSOPT. A sub-
jective analysis is necessary to analyze the real perceptual differences between
the methods under study.

4.2 Subjective Results

The subjective test was conducted with 35 sentences unseen during training.
15 volunteers were asked to listen to the converted-target sentence in random
order. Listeners were asked to judge the similarity of the voices to the target
using a 5-point scale, from 1 (totally different to target) to 5 (totally identical to
target). On the other hand, the listeners were also asked to rate the quality of
the converted sentences from 1 point (bad) to 5 points (excellent). The resulting
scores for similarity are shown in Fig. 8.

The MOS of similarity shows that the methods based on k-histograms have
a better similarity to target voice than GMM and FSOPT methods, as shown
columns MOS-S and MOS-Q of Table 1.

However, the use of frame selection improves the performance of GMM voice
conversion, as shown by Dutoit’s proposal in our experiments. The similarity
improves in 0.7 and quality in 0.3.

The Wilcoxon test of Table 2 shows only statistical relevant differences (black
box for p < 0.01) in similarity scores of FSOPT, KH314 and KH3140 with respect
to GMM. The Wilcoxon test for quality scores of Table 3 shows that all methods
have statistical relevant differences (p < 0.01), except between FSOPT, KH314
and KH3140.
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FSOPT KH3 14 KH2140 FSKH314 FSKH2140 DUTOIT GMM

Fig. 8. MOS of similarity to target voice

KH314 KH3140 GMM

FSOPT O O |
KH314 O |
KH3140 u

Table 2. Wilcoxon test for MOS-S (p < 0.01)

5 Conclusions

In this paper we presented a voice conversion algorithm based on a novel ap-
proach using a non-gaussian statistical transformation function.

Subjective experiments show that the method based on a non-gaussian sta-
tistical transformation has a better trade-off of similarity and quality than the
other systems under evaluation.

The quantization introduced in the LSF parameters to estimate the his-
tograms and to transform source coefficients into target coefficients did not show
an impact in the MOS.

Here we have proved that k-histograms is a very good alternative to transform
LSF coefficients in voice conversion. Future work will extend the system with
state-of-the-art methods to include excitation, so that the quality of the complete
voice conversion system makes it usable.

KH314 KH3140 GMM

FSOPT [O g |
KH314 U |
KH3140 u

Table 3. Wilcoxon test for MOS-Q (p < 0.01)
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