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Abstract. Acoustical analysis of speech using computers has reached an important
development in the latest years. The subjective evaluation of a clinician is complemented
with an objective measure of relevant parameters of voice. Praat, MDVP (Multi Dimensional
Voice Program) and SAV (Software for Voice Analysis) are some examples of software for speech
analysis. This paper describes an approach to estimate the subjective characteristics of RASATI
scale given objective acoustical parameters. Two approaches were used: linear regression with
non-negativity constraints, and neural networks. The experiments show that such approach
gives correct evaluations with ±1 error in 80% of the cases.

1. Introduction

In the latest years the acoustical analysis of speech has reached an important development
thanks to the progress of computers. The main advantage of computer analysis of speech is the
non-invasive and objective assessment of the voice.

The human auditory system is one of the main obstacles in the perceptual diagnostic of voice
by the clinician ear. Humans are fundamentally prepared to perceive the voice as a whole, which
is particularly advantageous from the point of view of linguistic communication. However, this
ability is limited when it is necessary to individualize relevant aspects from a clinical perspective.

It is often difficult to determine the origin of certain anomalies of the voice using a perceptual
procedure. For example, Baken et al. [1] show that some aspects of the pitch are more related
to resonant frequencies of the vocal tract rather than to the frequency of vibration of vocal
chords. The hypernasality of voice can be a consequence of the desynchronization in the timing
of velar occlusion instead of an incomplete occlusion. Hence, the same attribute or alteration
of the vocal quality may have its origin in different subsystems which can not be easily isolated
with the audition of an expert.

In other cases, an adequate perception can not be quantized with the degree of precision of a
numerical measure. For example, it is possible to measure the degree of breathiness of a breathy
voice through the corresponding speech parameter, the index of turbulence of voice (or VTI). In
this way, the subjective evaluation of a clinician is complemented with an objective measure of
relevant parameters of voice. As a consequence, the objectivity of the report is enhanced, and
it is possible to measure the degree of progress more accurately.

Validity and reliability of acoustic analysis performed with different tools is affected by many
factors. These include microphone type, noise levels, data acquisition system, sampling rate
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and software used for analysis [4, 5]. Ostensibly, the values of the commonly used frequency
and amplitude perturbation measures should not be dependent on the software used to obtain
them. Jitter and shimmer, for example, are defined by relatively simple and standardized
formulas [2]. The differences observed between numerical values obtained for these measures
using different softwares apparently stem from the raw fundamental frequency (f0) data on which
these calculations are based. Despite the basic nature of this parameter, there is no standardized
algorithm to calculate f0, which has been adopted and implemented by all programs.

While different methods for calculating f0 may yield relatively small differences in the mean
value of f0, they may influence the perturbation measures to a far greater extent. This introduces
a difficulty for the clinical voice specialist, because different programs which are available for
conducting voice analysis could report different values when analyzing identical voice samples.
Moreover, it is not clear whether normative data which are presented by specific software
(e.g., the data used for the radial graph in Multi-Dimensional Voice Program, or MDVP)
are comparable with values obtained in other programs. This possible discrepancy between
the results obtained by different programs was previously noticed and addressed by various
researchers [8, 4, 12, 6].

In the voice analysis of speech disorders exists a gap between the subjective and objective
measures. On the one hand, objective measures are based on time and frequency calculations.
On the other hand, subjective scores are based on scales with more complex concepts that have
a correlate with objective parameters. One example of a subjective criterion is the RASATI
scale, which considers aspects such as hoarseness(R), rough (A), breath (S), asthenic (A), strain
(T) and instability (I). In that scale the severity of a pathology is measured using a zero to three
discrete scale.

This paper explores the relationships between the perturbation measures and the subjective
scale RASATI. The main goal is to estimate the values of the subjective evaluation given
objective measures, such as jitter, shimmer, HNR, etc. In this way, it would be possible to
trace the progress of a patient using more human perceivable factors, such as hoarseness or
strain.

This paper is organized as follows. Sections 2.1 and 2.2 describe the objective and subjective
approach to assess voice quality in speech disorders, and Section 2.3 depicts the proposed
methodology to find the relationships between objective and subjective scores. Section 3 shows
the experimental results with the acoustic parameter calculated by SAV and PRAAT. Finally,
conclusions and future work are drawn in Section 4.

2. Evaluation of speech disorders

The evaluation of speech disorders can be performed using both subjective and objective scores.
The former use some ratings to measure different aspects of the voice quality. On the other
hand, objective measures use acoustic parameters obtained with different computer algorithms
to grade the voice pathology.

2.1. Subjective evaluation of speech disorders

Proposed by Hirano [7] and accepted as standard by the Japanese Society of Logopedics and
Phoniatrics and the European Group on the Larynx, the GRBAS scale comprises five qualitative
characteristics: Grade of dysphony (G), Roughness (R), Breathiness (B), Asthenicity (A), and
Strainess (S). For each one, a value in the range 0-3 is considered, where 0 corresponds to healthy
voice, 1 to light disease, 2 to moderate and 3 to severe. Despite some limitations, GRBAS is
simple and fast, and has a good correlation with some acoustic parameters [11].

The severity of hoarseness is quantified under the parameter G (Grade) integrating all deviant
components. Two main components of hoarseness can be identified: Breathiness (B), which is
the audible impression of turbulent air leakage through an insufficient glottal closure, and it may
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include short aphonic moments (unvoiced segments); and Roughness (R), which is an audible
impression of irregular glottic pulses, abnormal fluctuations in F0, separately perceived acoustic
impulses (as in vocal fry), and includes diplophonia and register breaks [11].

These two parameters have shown sufficient reliability (inter and intra observer
reproducibility) when used in a current clinical setting [3]. The behavioral parameters A
(Asthenicity) and S (Strain) are commonly less reliable and sometimes are omitted from the
basic protocol. R and B features are associated to organic lesions in which there is a lowering of
vibration (R) and default of closure (B), whereas features A and S are associated to functional
disorders, related with vocal tiredness (A) and hyperphonic emission (S) [11].

The GRBAS evaluation is usually carried out based on continuous or conversational speech.
However, sometimes it is approached by means of sustained vowels, although there are studies
demonstrating that the results might differ depending on the material used [10]. They conclude
that the evaluation from sustained vowels is less severe (i.e. dysphony is underestimated) than
that carried out from continuous speech, especially in those patients with severe dysphony. The
same study calls the attention over the variability of each of the five GRBAS parameters. The
most consistent parameter is G, whereas scales A and S demonstrated a strong variability, due
to the fact that these concepts are more complex to evaluate, even by a human expert [11].

The RASATI scale is the acronym proposed by Pinho et al. [9] to replace the English
acronym GRBAS, and incorporates another factor named instability. Some authors consider
that Instability corresponds to the tremor of the structure of the vocal tract, and must not be
included in the analysis of alterations in the glottal source. The RASAT scale (not including
Instability) is the standard adopted by the “Sociedad Argentina de la Voz” to measure voice
quality.

2.2. Objective evaluation of speech disorders

The literature on voice analysis reveals that one or two voicing parameters alone, such as jitter
and shimmer, are not sufficient to accurately describe an aberration in a patient’s voice. Jitter
values may be within normal limits in a patient who demonstrates a breathy voice quality, and
periodic modulation over many glottal periods (tremor) should be differentiated from cycle-
to-cycle modulation. Similarly, turbulence caused by incomplete glottal closure can contribute
a different type of “noise” compared to noise from aperiodic vibration; and, longterm periodic
modulation of amplitude (amplitude tremor) may have physiological causes that differ from those
of long-term periodic modulation of frequency. The analysis of voice requires a multi-dimensional
approach which is followed by many software applications. Examples of applications that agree
with this direction are the Multi-Dimensional Voice Program (MDVP) of KayPentax, and the
Software for Voice Analysis (SAV).

Some of the parameters estimated by MDVP are: Jita (Absolute Jitter), Jitt (Jitter percent),
RAP (Relative Average Perturbation), PPQ (Pitch Perturbation Quotient), sPPQ (Smoothed
Pitch Perturbation Quotient), vFo (Fundamental frequency variation), ShdB (Shimmer in
decibels), Shim (Shimmer percent), APQ (Amplitude Perturbation Quotient), sAPQ (Smoothed
Amplitude Perturbation Quotient), vAm (Peak-to-Peak Amplitude Variation), NHR (Noise
Harmonic Ratio), VTI (Voice Turbulence Index), SPI (Soft Phonation Index), FTRI (Fo-Tremor
Intensity Index), ATRI (Amplitude Tremor Intensity Index), DVB (Degree of Voice Breaks),
DSH (Degree of Sub-harmonics), and DUV (Degree of Voiceless). Many of these parameters
have become standards in the analysis of voice, and several papers about the study of speech
disorders are based on the results of this software.

The Software for Voice Analysis developed estimates several parameters (some of them
available in MDVP), such as jitter (jittr, jitta, jittrap,jittppq5), shimmer (shimr, shima, shimrap,
shimppq5), HNR and SPI. The algorithm to estimate the values of pitch period is similar to the
one used by PRAAT, which is based on the autocorrelation method. MDVP pitch estimation
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model is based on peak picking, and such approach is under some controversy in the paper
of one of the authors of PRAAT: “Should jitter be measured by peak picking or by waveform
matching?”.

2.3. Relationships between objective and subjective evaluations

The study of the relationships between objective and subjective evaluations can be carried
out with several statistical techniques, such as logistic regression and correlation studies. This
paper proposes to estimate the values of the subjective evaluation given the objective parameters
using two approaches: linear regression with non-negativity constraints and feed-forward neural
networks.

Linear regression is a modelling approach to estimate a linear relationship between a scalar
variable y and one or more variables denoted X. In linear regression, data are modeled using
linear functions (y = β0+

∑
N

i βixi), and unknown model parameters are estimated from the data
(β0, β1, ..., βN ). y is called the dependent variable, and xi are called predictor or independent
variables. In this case the dependent variable y is one of the RASATI values that ranges from
zero to three, and the independent variables xi are the parameters of the objective evaluation,
such as relative jitter or HNR.

The main drawback of linear models is the lack of a non-negativity constraint in the weights
(βi). Some β values may be negative, and such linear function will have a distorted behaviour
if it is considered each weight as a measure of the importance of each parameter. For example,
a negative weight would mean that the higher the jitter the lower the severity of the pathology,
which is completely unlogical. Because of that the linear regression uses a non-negativity
constraint in the least squares optimization of the weights.

y = β0 +
N∑

i

βixi, βk ≥ 0 (1)

The neural network approach is also explored in this paper. An artificial neural network
(ANN), usually called neural network (NN), is a mathematical model that is inspired by the
structure and functional aspects of biological neural networks. A neural network consists of an
interconnected group of artificial neurons, and it processes information using a connectionist
approach to computation.

Figure 1. Example of a neural network with three layers: input, hidden and output

Mathematically, a neuron’s network function f(x) is defined as a composition of other
functions gi(x), which can further be defined as a composition of other functions. This can
be conveniently represented as a network structure, with arrows depicting the dependencies
between variables, as shown in Figure 1. A widely used type of composition is the nonlinear
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weighted sum, where f(x) = K (
∑

iwigi(x)) , where K (commonly referred to as the activation
function) is some predefined function, such as the hyperbolic tangent. This work in this paper
uses feed-forward networks, because their graph is a directed acyclic graph, as shown in Figure 1.

The inputs of the neural network are the parameters calculated in the objective evaluation,
and the outputs is the value of the objective evaluation in the RASATI scale. The first neuron
corresponds to the value zero, and the last one to the value three.

3. Experiments

This section shows the experimental results of the estimation of the subjective values of the
RASATI scale with the parameters calculated from the audio signal with two different acoustical
analysis applications: SAV and PRAAT.

3.1. Experimental setup

The experiments of the two approaches to estimate the subjective values of the RASATI scale
given the objective parameters were performed using a database of 105 samples. Each recording
has a sampling frequency of 44100 samples per second, and 16 bits of amplitude resolution. Each
vocalization was evaluated by the speech therapist to score each qualitative characteristic of the
RASATI scale from zero to three, with a rounding to plus infinity when some score fall between
two possible values. For example, a value of one to two was scored as two.

Each patient uttered a sustained vowel (/a/ or /e/) with an approximate duration of eight
seconds. The patients range from the age of 16 to 88, and there are patients from both sexes with
different pathologies, such as disfunctional dysphonia, nodules, laryngitis, polypus or papilloma.
Some recordings correspond to several sessions of the same patient.

The experiments were performed using the two approaches: linear regression with non-
negativity constraints in the weights, and feed-forward neural networks. In both cases the
leave-one-out cross-validation technique was used because of the limited available data in the
experiments. Leave-one-out cross-validation involves using a single observation from the original
sample as the validation data, and the remaining observations as the training data. This is
repeated such that each observation in the sample is used once as the validation data. Leave-
one-out cross-validation is usually very expensive from a computational point of view because of
the large number of times the training process is repeated. The small amount of training data
in the experiments is suited to be used with this cross-validation approach.

The linear regression with non-negativity constraints was calculated using the LSQNONNEG

command of MATLAB to estimate the weights using the training data. LSQNONNEG returns
the vector X that minimizes NORM(C*X-d) subject to X ≥ 0. The non-negativity constraints
are necessary to estimate the weights in order to avoid negative values that would indicate an
inverse behaviour. For example, if the weight of the jitta parameter is negative, it would mean
that the greater this value, the smaller the pathology, which is clearly wrong.

Feed-forward neural networks were trained using the backpropagation optimization algorithm.
The neural networks have multiple inputs and four outputs, each one corresponding to a possible
value of the RASATI evaluation. The hidden layer consisted of 10 neurons with a tansig
activation function.

Two applications to estimate the objective parameters were used: SAV and PRAAT. PRAAT
was chosen because is one state-of-the-art free software for the analysis of speech in phonetics
written by Paul Boersma and David Weenink of Phonetic Sciences of University of Amsterdam
(The Netherlands).

The acoustical parameters estimated with the Software for Voice Analysis in this experiment
are jittr, jitta, jittrap,jittppq5, shimr, shima, shimrap and shimapq5. The parameters estimated
with PRAAT were jittr, jitta, rap, ppq5, ddp, shimr, shimdB, apq3, apq5, apq11 and dda.
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3.2. Experimental results

The experimental results with the linear regression with non-negativity constraints approach is
shown in Figure 2. The columns that end with the letter S correspond to the results obtained
with SAV, and the columns with an ending P correspond to the results obtained using PRAAT.
Each column shows in different colours the proportions of cases were the estimation of the
RASATI values using the objective parameters was lower than the value decided by the speech
therapist (-1, -2 or -3), higher (+1, +2 or +3), or equal. The similar results obtained with
the parameters estimated with PRAAT and SAV shows that the linear regression with non-
negativity constraints achieves an error around ±1 in the 80% of the cases. Such errors are not
so severe because RASATI scale is a subjective assessment procedure with only four possible
values, and any slight difference of perception produces a ±1. In these experiments, fluctuations
in the order of ±1 are possible due to the sensitivity of objective measures. Nevertheless, future
work should be devoted to better match the subjective opinion or uncover their origin in each
case.

Figure 3 shows the experimental results using the feed-forward neural networks. The
distributions of the errors are similar to the results obtained with the linear regression with
non-negativity constraints approach. The first approach shows a smaller error than the neural
networks for all conditions, but such difference is not significant due to the small amount of data
used in the experiments.
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Figure 2. Distribution of the absolute errors for the linear regression with non-negativity
constraints approach

The analysis of the weights shows that the important parameters to estimate RASATI scores
by means of SAV parameters are (ordered by relevance):

• R : jittr, jitta, shimr and shimapq5.

• A : too few cases available.

• S : jitta, jittr, shimr and shimapq5.

• A : too few cases available.

• T : jittr, shimapq5 and shimr.

• I : jittr, shimapq5 and shimrap.

In the case of PRAAT acoustical parameters the order of relevance are:
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Figure 3. Distribution of the absolute errors for the feed-forward neural network approach

• R : jittr, apq11, shimdB and jitta.

• A : too few cases available.

• S : apq11, ppq5 and shimdB

• A : too few cases available.

• T : apq11, jitta and shimdB.

• I : jittr, apq11 and ppq5.

In both cases is observed changes in the acoustical features and also in the order of relevance.
This fact is important to model each RASATI characteristic individually.

4. Conclusions

In this paper it was made a set of comparative experiments to study the relationships between
objective and subjective evaluations of speech disorders. The subjective measure is the RASATI
scale, the standard chosen by the “Sociedad Argentina de la Voz” to measure voice quality.

Experimental results shown that linear regression with non-negativity constraints and neural
networks achieve similar estimation performances. The error in the estimation of the RASATI
value is around ±1 in the 80% of the cases. Such errors are not so severe because RASATI
scale has only four possible values, and any slight difference of perception produces a ±1. These
fluctuations are possible due to the sensitivity of objective measures.

Future work will focus in the evaluation of additional objective acoustical features to improve
the estimation of the six qualitative characteristics of RASATI scale, and to uncover the origin
of the differences between the estimation and the opinion of the speech therapist in each case.
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