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Abstract—Automatic speaker recognition is the use of a ma- sources of information. Therefore, these sources may #so p
chine to identify or verify the identity an individual from a spoken an important role in the automatic speaker recognition, tagk
sentence. This paper describes an implementation of a embeaed adding complementary knowledge to the traditional spectru

speaker verification system that may be used for an electroni b d iti t d thus i ina thei
door lock, among other possible applications. The system Isuilt ased recognition systems an us Improving their acgurac

in a low cost dsPIC from Microchip, which combines features 6 \oice is not expected to have enough distinctiveness to
microcontrollers with characteristics of DSPs in a single 6-bit allow the recognition of an individual from a large databake

high-performance core. Some special programming technices speakers. Moreover, it is characterised by three impodisat
ysed for the implementation are described. The aim was optiia- advantages: first, a speech signal can be degraded in doality
ing the code for speed and memory usage. Experimental resslt . - ; :

in MATLAB of the embedded speaker verification algorithms the microphone or the transmission channel; second, yalne c
show promising results, with a false acceptance rate of 8% fo be affected by the health of a person, stress or emotions; and
a false rejection rate of 12%. finally, it has been shown that some people are extraordiinari

Index Terms—Speaker verification, embedded system, dsPIC. skilled in mimicking voices [1], [2]. However, voice is a non
intrusive biometric with a high acceptability. Moreovet,is
nowadays the only feasible biometric identifier in appliwas

IOMETRIC recognition refers to the use of distinctiverequiring person recognition over a telephone system 8], [

characteristics to identify individuals [1], [2]. These This paper describes an implementation of a embedded
biometric identifiers are usually classified into physiébad speaker verification system that may be used for an electroni
or behavioural characteristics. door lock, among other possible applications. Our system is

Physiological biometrics, like fingerprints, face, hand gebuilt in a low cost dsPIC from Microchip, which combines
ometry, retina or iris, are physical characteristics that be features of microcontrollers with characteristics of D$fPa
measured at some particular point in time. On the other hamsihgle 16-bit high-performance core.
behavioural biometrics like signature, voice or gait, dsinef The paper is organized as follows. Section Il briefly de-
actions that extend over time. Unlike physiological bioriwst  scribes speaker verification systems, their architecfaedyre
behavioural biometrics are learned or acquired over tine aextraction and statistical models. Section 11l depicts pne-
they can be easily and deliberately changed [2]. posed embedded speaker verification system, with details of

Speech is one of the most natural modalities of humahne implementation. Finally, Section IV shows the condusi
interaction, a fact corroborated by many years of researahd some future directions.
and development in speech processing. Recent developments
in speech technologies have finally provided truly function
applications. An example of these applications is the role Depending on the application, an automatic biometric recog
of speech as a biometric identifier for automatic speakeition system can run in two modes: identification and verifi-
recognition. cation [4].

Automatic speaker recognition is the use of a machineln identification mode, the aim is to determine which
to identify an individual from an utterance. Recently, thispeaker, in a set of known users (whose models are stored in
technology has undergone an increasing importance in dpe database), matches the unknown user. In the verification
plications such as access control, transaction authd¢intica mode, the aim of a system is to determine whether an unknown
law enforcement, forensics, and system customisationngmaiser is who he/she claims to be or an impostor. Applications
others. of the later mode are mainly related to access restriction in

One of the central questions addressed by this field is wisgicured areas, and it is of interest in this paper.
conveys speaker identity in the speech signal. Traditignal In verification systems (see Fig. 1), a user is claiming an
automatic speaker recognition systems have relied mosthentity. A model corresponding to that identity must bestb
on short-term features related to the spectrum of the voidéethe database, which must contain an impostor model as well
However, human speaker recognition relies on other additio The biometric features of the claimed user are compared to

I. INTRODUCTION

Il. SPEAKER VERIFICATION SYSTEM



A. Architecture of a speaker recognition system

& 5P 8 CIERS? A typical biometric recognition system consists of two

phases (see Fig. 3): the training phase (enrollment) and the
YES testing phase (recognition). In the training phase, bidimet
—>  or measurements from the users are captured by means of biomet-
S —— - ric sensors or readers. Then, relevant information is etdch
e from the biometric measurements (feature extraction) itd bu
impostor a user model, which will be stored in a database.
DATABASE
train
Fig. 1. Automatic speaker verification system.
RS

the model of the claimed identity and to the impostor mode
If a user seems to be closer to the claimed identity, he/s P O
will be accepted as a known user. Otherwise, the user will | ﬁﬁﬁ Bometrie L) e b Jamg > pecision
rejected and treated as an impostor. '

After having computed a score of similarity between th
input user and the corresponding templates stored in the
database, a decision is taken whether the user must be adcept

or rejected by the system. However, such decision can be . . _
correct or not. If the decision is incorrect, two differemtcs In the recognition phase, biometric readers are also used
can occur [3]: to capture biometric information of the user to be recoghise

L ) I . . Relevant information is extracted from the data provided by
» False rejection: the system rejects a valid identity Cla'nfhe biometric sensors in the feature extraction step. This

- False ac_ceptance: the system accepts an identity CIQHﬂ)rmation is compared with the stored user models of the
from an impostor. database, computing the degree of similarity (the termesisor
Both types of errors give rise to two types of error rateglso used). This similarity measure will be used to deteemin
which are commonly used to measure the performance ofyether the user corresponds to one of the users whose model
system: is stored in the database or not. Finally, a decision is taken
. False rejection rate (FRR): percentage of incorrectyased on the computed similarity scores.

rejected clients. _
. False acceptance rate (FAR): percentage of incorreclly Feature extraction

test

Fig. 3. Architecture of a typical biometric recognition .

accepted impostors. Feature extraction or speech parameterisation in the speak
verification field consists in transforming the speech digra
Error rate (%) a set of feature vectors [3]. The aim of this transformat®toi
100 obtain a relatively low-dimensional representation, msui-

able for statistical modeling, the computation of a diserar

any other kind of score (in order to enable comparisons using
simple similarity measures), while preserving the infotioma

FRR related to the identity of the speaker.

The most commonly used parameters in state-of-the-art
speaker and speech recognition technologies are the Mel-
Frequency Cepstral Coefficients (MFCC) [5], [6]. They are
I . O a representation of the short-term power spectrum of a sound
0 . based on the linear cosine transform of the log power spctru

Threshold @ on a nonlinear Mel scale of frequency (see Fig. 4).

FAR

Fig. 2. False rejection rate and False acceptance rate asctiofu of the

threshold6. e
-th\ﬂﬂ)«»w — re- » Windowing > FFT
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Therefore, when designing a biometric verification system l
the decision threshold (see Fig. 3) must be adjusted so th
both errors are as low as possible, or one of the errors must |
always below a certain threshold when a specific application
requires this property. Fig. 4. Mel-frequency cepstral coefficients computaticgpst

Cumrcc ¢ DCT

A

Log(+) Filterbank




Commonly, speech processing in the speaker verificatianspeaker recognition task, together with the signal energy
task begins with a first order high-pass filtering of the sheewariation.
signal to emphasise high frequency components. Then,dhe si
nal is segmented in temporal frames and typically windowdg Statistical models
with a Hamming window to reduce the discontinuities in the Gaussian mixture models (GMM) are commonly used as a
boundaries of the segmentation. This procedure is ususdlgi u modeling technique in speaker verification systems. A GMM
for short-term analysis of speech. is a weighted sum of gaussian density functions that models
The first step for the computation of Mel-frequency cepstréthe distribution of the feature vectors extracted from fheesh
coefficients is performing the Discrete Fourier Transforrsignal [13], [14]. Given a D-dimensional feature vecigrthe
(DFT) of the speech frame. Usually a Fast Fourier Transfor@aussian mixture model; corresponding to the speaksy
is used to reduce the computation time. is defined by the expression in Equation 1.
The resulting values are then passed through a filterbank dis
tributed along the frequency domain according to a Mel scale i i
A vector of energy values is obtained with this step: theeFilt P(z|Ai) Z WiV (2, i, X)) 1)
Bank Energies (FBE). The Mel scale, proposed by Stevens [7]
is based on the manner how the speech perception works in thé/ (z, 1, £) is a gaussian function defined as shown in
human ear. The human auditory system non-linearly resolveguation 2, wherey is the vector of means and the
frequencies across the audio spectrum. Empirical eviderggvariance matrix.D is the number of elements in the D-
suggests that a system that operates in a similar nonlir@ar wdimensional feature vectar. M is the number of mixtures,
obtaining the desired non-linear frequency resolutioayjates andw,, are the weights of each mixture, that must sum up

a better recognition performance. one.

The Mel scale filterbank is a series of Q triangular bandpass
filters that have been designed to simulate the bandpass B 1 L) TS (o)
filtering by mimicking the human auditory response. Theeseri N(x, 1, %) = (%T)Tme : @)

of constant bandwith triangular filters are 50% overlapped a

spaced on a Mel frequency scale. On a linear frequency scaleBy means of dynamic programming algorithms, the prob-
the filter spacing is approximately linear in the range from @bility that a sequence of speech frames was generated by
to 1000Hz, and logarithmic at higher values of frequency THhis model can be determined [15], [16]. This probability -o
triangles are all normalised to have unit area. likelihood- is used as a score for L frames of input speech

After applying this filterbank, the number of coefficients igiven the model [15], [16], [4].
reduced, and hence the information is compacted. The \@rian In the recognition step, given a sequence of test feature
is also reduced when averaging the samples of the DFTMACtors X = [z1,22,...,27] extracted from an unknown
each filter. Finally, a logarithmic compression and the Bige User's speech, the probability of the unknown speaker being
Cosine Transform (DCT) is applied to the vector of FBE ithe speaker; (assuming that vectors; are independent) is
order to obtain the MECC. determined by the following expression in Equation 3, which

The DCT serves two purposes. First, the DCT perforn¥éll be used as a similarity score.
the final part of a cepstral transformation which separdtes t T
slowly varying spectral envelope (or vocal tract) inforioat
from the faster varying speech excitation. MFCC only retain PX|A) };[1 Pladdi) 3)
the low order coefficients related to vocal tract. o ) )

The second purpose of the DCT is to decorrelate th® SPeaker verification system implementation
elements of the feature vector. Elements of the log filtekban The speaker verification system implemented in this paper
vector exhibit correlation due to both the spectral chamact consists of state-of-the-art approaches. Two main spessh f
istics of speech and the overlapping nature of the filterbartkres are used in the decision about the identity of the syeak
Such process makes the resulting decorrelated coeffigaitts MFCC (13 coefficients calculated from windows with56
able for the use of diagonal covariance matrices in stadikti samples, without window overlap) and fundamental frequenc
classifiers. (Fo).

Research on additional information sources in speakerThe proposed system performs cepstral mean substrac-
recognition has been mainly focused on the use of thien (CMS) to remove channel effects in MFCC parameters.
fundamental frequency as a complement to the vocal traaindamental frequency and two derived parameters, relativ
information provided by MFCC. One of the reasons is thiiter and relative shimmer, are also used in the likelihood
robustness to acoustic degradations from channel and naisenputation of the speaker under analysis. Jitter is a nneasu
effects [8], [9]. Arcienega et al. [10], for example, sugge®f the periodic deviation in the voice signal, or the pitch
the use of FO-dependent speaker models. In the works pafrturbation of the signal. Shimmer (amplitude pertudigti
Sodnmez et al. [11] and Adami et al. [12], the variation of similar to jitter, but instead of looking at periodicitit,
fundamental frequency over time is modeled for its use measures the difference in amplitude from cycle to cycle.
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Therefore, four parameters are extracted from each specun
frame to evaluate the identity of the speaker: fundamental Fig. 5.
frequency, relative jitter, relative shimmer, and logelikood.
The later is calculated as the difference between the log-
likelihood of the feature vector (MFCC) for the claimeditter of fundamental frequency, and shimmer of amplitude
identity model, and the log-likelihood of the feature vectoyalyes.
for the Universal Background Model (UBM). This UBM is These features are analyzed using the reference modéils, tha
the impostor model. Such model must contain every possilles loaded into the dsPIC from an SD card. These models can
alternative to the speake;. be changed and reloaded into the SD card using the training
In this paper was used the approach that consists in trainigftware that creates a custom model for the specific user.
the impostor model as a single model using several speakThe system proposed in this paper was implemented using a
ers [17], [18], [19]. This model is usually called universafjevice dsPIC 33FJ128GP802-E/SP from Microchip. The main
background model (UBM), and when using Gaussian mixtufeatures of this device are:

models, the method is known as the GMM-UBM approach. | 15gxg of program memory. This makes it suitable for
The similarity score between the unknown speaker and the use with cross compilers.

claimed identity is performed comparing the mean vector of | 16KB of RAM. Of which 2KB are shared with direct

speech features (fundamental frequency (FO0), relativer jit memory access (DMA) buffer as dual ported RAM.

(JR), relative shimmer (SR), and log-likelihood (LL)) ovadf « Up to 40 MIPS operation.

frames of the spoken utterance, as shown in Table I. « Low cost. As mentioned before, its price is 4 US$, much
The similarity score between the input feature vegtor lower than a classic DSP. This is a great advantage

and the templateS; is given by a distancel(u, 1s,). The compared with comercial DSP devices.

distance measure between these two vectors can be expressed; g_pit wide data path.

asd(p, pis;) = (u—pus;)%(p—ps;). Thex weighting matrixis | 15 hit@500ksps  integrated analog-to-digital converter

Embedded speaker verification system.

the inverse covariance matrix corresponding to mean This ADC).

distance is known as the Mahalanobis distance. A threshold, Double-buffered input/output registers. This allows for

valued, the maximum allowable value for distanégu, s, ), faster operations on the ports (read-write), and also gives

is used to take the decision about the identity: known speake 50 flexibility on the handling of them.

or impostor. « In-Circuit Serial Programing and Debbuger. The device
can be programmed and configured in the end application

IIl. | MPLEMENTATION OF AN EMBEDDED SPEAKER
VERIFICATION

circuit.

o 28-pin SOIC packaging available. Allows for great levels

The diagram of Fig. 5 shows the different components of integration.
included in the embedded speaker verification system pempos ]
in this paper. A. Limitations in RAM memory of dsPIC

The biometric sensor of the system is a microphone. TheOne of the main limitations to implement a speaker verifica-
electric signal of the microphone is amplified and filtered ttion in dsPIC is the limited amount of RAM memory. In order
increase the Signal-To-Noise Ratio and to prevent aliasit@minimize the impact of such restriction, a number of aspec
during sampling. were taken into account to optimize the use of memory.

The electric signal is sampled with the internal Analog- Without any optimization in the use of variables in RAM
to-Digital Converter included in the microcontroller (d€P memory, the total amount of memory usage is shown in
33FJ128GP802-E/SP). The sampling rate is 16KHz and thable II.
resolution is 12 bits. The signal is segmented into frames ofVariables Buffer and Data are the integer and floating point
256 samples, obtained using a double buffer DMA techniquepresentation of the frame under analysis. HammingWindow

Each frame is processed to obtain different acoustic paranh@s the precalculated values of a 256 point Hamming window.
ters, such as energy, spectrum, MFCC, fundamental frequenithe variables Sinus and Cosinus have the precalculatedsalu



TABLE I TABLE Il

INITIAL MEMORY USAGE ACTUAL MEMORY USAGE
Variable #elements[| type [[ Memory (bytes
Buffer 356 |¥tp 510 y (bytes) Variable #elements|| type Memory (bytes)
Data 256 float || 1024 Buffer 256 int 512
HammingWindow || 256 float || 1024 Data 256 float 1024
Sinus 256 float 1024 I—!ammmngdow Program memory || 0
Cosinus 256 float || 1024 sigReal 256 long 1024
Butterfly 256 char || 256 twdIFctr32b 768 long 3072
RealFET 256 float || 1024 pwrspect/Autocorr|| 256 long 1024
ImagFFT 256 float || 1024 MFCCFilters Program memory || O
MFCCFilters 24x53 float || 5088 bCT Program || memory || O
DCT 24x13 float 1248 MFCCCoefs 13 float 52
Autocorr 256 float || 1024 InvCovars 13x2x16 float 3328
MFCCCoefs 13 float || 52 M(_eans 13x2x16 float 3328
InvCovars 13x2x16 || float || 3328 Priors 2x16 float 256
Means 13x2x16 float || 3328 Determinants 2x16 float 256
Priors 2x16 float || 256 Total 13876 < 16KB
Determinants 2x16 float || 256
Total 21492 > 16KB

The original subroutine of Hamming window had this code:

of a 256 point sinus and cosinus, and Butterfly has the! Nt b , , ,
necessary information for the correct calculation of thetFa | Of (i =0;i<bfrsize;i++)
Fourier Transform (FFT). The result of the FFT is put into the { ) ) o
variables RealFFT and ImagFFT. data[i]=data[i]*w n[i];
The Mel-frequency cepstral coefficients are calculateth wit }
the resulting spectrum of the FFT. The precalculated Mdesca The new subroutine of Hamming window has all the values
filterbanks can be found in the MFCCFilters variable, and tHtard-coded, with a benefit in memory usage and speed. The
final discrete cosine transform is computed using the DGSRMple values of the Hamming window are literals (reduction
variable (precalculated cosinus). in the usage of RAM memory), and the comparison and
Gaussian mixture models are loaded into the RAM memot§crement of for loop are not necesssary (increment in gpeed
of dsPIC from SD card into the variables InvCovars (inverse dat a[ 0] »=0. 08f ;
of the covariance matrices), Means (mean vectors), Priorsdat a[ 1] *=0. 0801396318543067f ;
(prior values of each gaussian mixture) and Determinantsdat a[ 2] *=0. 0805584426474237f ;
(determinant of each covariance matrix).

As shown in the last line, the total amount of memory The same approach was used to implement the subroutines
necessary for our application is higher than the availabie calculate Mel-frequency cepstral coefficients, with adfi
memory. RAM usage and speed. The original subroutines took 18.7ms

A careful analysis of the variables shows that HammingWito calculate the MFCC for a frame, while the new hard coded
dow, MFCCFilters, DCT, and the routines that use them cafbroutine only takes 5.36ms.

be hard coded into Program memory. This decision saves 736&he use of Microchip’s subroutine for Fast Fourier Trans-

bytes of memory that may be used for better Gaussian Mixtugdm (FFTReal32blP) has an important benefit in speed. The
Models, that have a severe impact in the final performance gfginal subroutine coded in C had a duration of 64ms to obtai
the speaker verification task. the power spectrum of a frame, while the new subroutine that
The Fast Fourier Transform is now calculated using Mincludes the code proposed by Microchip only takes 5.36ms.
crochip’s subroutine FFTReal32blP. This routine needsemor The integer implementation of autocorrelation was the final
memory, but the real benefit is obtained in speed. improvement in the code to process a frame and calculate all
The variable Autocorr is only used to calculate the funpe necessary parameters to take a decision in the speaker
damental frequency, which is then used to estimate |ittGgrification task. The total time to process a frame is 59ms.
and shimmer parameters too. Therefore, Autocorr variabige total time for the decision of the system depends on
may point to the same memory space as pwrspect (POWE duration of the utterance (without initial and ending

Spectrum) variable , saving even more RAM memory. Actug|iences). It may be estimated &% times the duration of
memory usage of the system is shown in Table lII. the vocalization.

B. Limitations in MIPS of dsPIC

Another important issue for the implementation of a embeg-' Speaker verification results
ded speaker verification system are the number of instmuctio Several experiments were conducted using MATLAB and
per second executed in a dsPIC. The 40 MHz clock only allowrsin-validation-test sets to study different algorithrfar
40 MIPS. Therefore, a careful selection in the implemeatati speaker verification systems, mainly focused in the opti-
of the different routines is essential. mization of the number of gaussian mixtures. GMM were



trained using the standard Baum-Welch algorithm and diagotre used as an auxiliary identification technique, and not as a
covariance matrices. primary identification technology, due to these low results
The source code was written using both MATLAB and Future work will focus in two main aspects: response time
C30 sintaxis, and possible differences in the calculatibn and better identification performance. Response time is an
the algorithms was checked. The differences remain smdll amportant issue in this 40 MIPS speaker verification system,
negligible. and improvements can be achieved through the use of inline
Available speech fromi68 speakers was divided into trainassembler inside C language.
and test sets. Both sets have different words, in order tol bui Better identification performance will be faced with new
and test a text-independent speaker verification system. speaker verification techniques, which may involved addail
The chosen architecture was tested using n-fold crdssitures, different modeling techniques, and signal dadi
validation to obtain the ROC curve. The receiver operatirigg algorithms.
characteristic (ROC), or simply ROC curve, is a graphicat pl
of the sensitivity, or true positive rate versus false peositate
for a binary classifier system as its discrimination thrégfim [1] D- Maltoni, D. Maio, A. Jain, and S. Prabhakétandbook of Fingerprint
. Recognition Springer, New York, 2003.
varied. [2] R. Bolle, J. Connell, S. Pankanti, N. Ratha, and A. Sen@uide to
The ROC for the proposed system is shown in Fig. 6. Biometrics Springer, New York, 2004.
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