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Maximiliano Lizondo, Pablo D. Agüero, Alejandro J. Uriz, Juan C. Tulli and Esteban L. Gonzalez
Facultad de Ingenierı́a

Universidad Nacional de Mar del Plata
Mar del Plata, Argentina

Email: mlizondo@fi.mdp.edu.ar

Abstract—Automatic speaker recognition is the use of a ma-
chine to identify or verify the identity an individual from a spoken
sentence. This paper describes an implementation of a embedded
speaker verification system that may be used for an electronic
door lock, among other possible applications. The system isbuilt
in a low cost dsPIC from Microchip, which combines features of
microcontrollers with characteristics of DSPs in a single 16-bit
high-performance core. Some special programming techniques
used for the implementation are described. The aim was optimiz-
ing the code for speed and memory usage. Experimental results
in MATLAB of the embedded speaker verification algorithms
show promising results, with a false acceptance rate of 8% for
a false rejection rate of 12%.

Index Terms—Speaker verification, embedded system, dsPIC.

I. I NTRODUCTION

B IOMETRIC recognition refers to the use of distinctive
characteristics to identify individuals [1], [2]. These

biometric identifiers are usually classified into physiological
or behavioural characteristics.

Physiological biometrics, like fingerprints, face, hand ge-
ometry, retina or iris, are physical characteristics that can be
measured at some particular point in time. On the other hand,
behavioural biometrics like signature, voice or gait, consist of
actions that extend over time. Unlike physiological biometrics,
behavioural biometrics are learned or acquired over time and
they can be easily and deliberately changed [2].

Speech is one of the most natural modalities of human
interaction, a fact corroborated by many years of research
and development in speech processing. Recent developments
in speech technologies have finally provided truly functional
applications. An example of these applications is the role
of speech as a biometric identifier for automatic speaker
recognition.

Automatic speaker recognition is the use of a machine
to identify an individual from an utterance. Recently, this
technology has undergone an increasing importance in ap-
plications such as access control, transaction authentication,
law enforcement, forensics, and system customisation, among
others.

One of the central questions addressed by this field is what
conveys speaker identity in the speech signal. Traditionally,
automatic speaker recognition systems have relied mostly
on short-term features related to the spectrum of the voice.
However, human speaker recognition relies on other additional

sources of information. Therefore, these sources may also play
an important role in the automatic speaker recognition task, by
adding complementary knowledge to the traditional spectrum-
based recognition systems and thus improving their accuracy.

Voice is not expected to have enough distinctiveness to
allow the recognition of an individual from a large databaseof
speakers. Moreover, it is characterised by three importantdis-
advantages: first, a speech signal can be degraded in qualityby
the microphone or the transmission channel; second, voice can
be affected by the health of a person, stress or emotions; and
finally, it has been shown that some people are extraordinarily
skilled in mimicking voices [1], [2]. However, voice is a non-
intrusive biometric with a high acceptability. Moreover, it is
nowadays the only feasible biometric identifier in applications
requiring person recognition over a telephone system [1], [3].

This paper describes an implementation of a embedded
speaker verification system that may be used for an electronic
door lock, among other possible applications. Our system is
built in a low cost dsPIC from Microchip, which combines
features of microcontrollers with characteristics of DSPsin a
single 16-bit high-performance core.

The paper is organized as follows. Section II briefly de-
scribes speaker verification systems, their architecture,feature
extraction and statistical models. Section III depicts thepro-
posed embedded speaker verification system, with details of
the implementation. Finally, Section IV shows the conclusions
and some future directions.

II. SPEAKER VERIFICATION SYSTEM

Depending on the application, an automatic biometric recog-
nition system can run in two modes: identification and verifi-
cation [4].

In identification mode, the aim is to determine which
speaker, in a set of known users (whose models are stored in
the database), matches the unknown user. In the verification
mode, the aim of a system is to determine whether an unknown
user is who he/she claims to be or an impostor. Applications
of the later mode are mainly related to access restriction in
secured areas, and it is of interest in this paper.

In verification systems (see Fig. 1), a user is claiming an
identity. A model corresponding to that identity must be stored
in the database, which must contain an impostor model as well.
The biometric features of the claimed user are compared to



Fig. 1. Automatic speaker verification system.

the model of the claimed identity and to the impostor model.
If a user seems to be closer to the claimed identity, he/she
will be accepted as a known user. Otherwise, the user will be
rejected and treated as an impostor.

After having computed a score of similarity between the
input user and the corresponding templates stored in the
database, a decision is taken whether the user must be accepted
or rejected by the system. However, such decision can be
correct or not. If the decision is incorrect, two different errors
can occur [3]:

• False rejection: the system rejects a valid identity claim.
• False acceptance: the system accepts an identity claim

from an impostor.

Both types of errors give rise to two types of error rates,
which are commonly used to measure the performance of a
system:

• False rejection rate (FRR): percentage of incorrectly
rejected clients.

• False acceptance rate (FAR): percentage of incorrectly
accepted impostors.

Fig. 2. False rejection rate and False acceptance rate as a function of the
thresholdθ.

Therefore, when designing a biometric verification system,
the decision threshold (see Fig. 3) must be adjusted so that
both errors are as low as possible, or one of the errors must be
always below a certain threshold when a specific application
requires this property.

A. Architecture of a speaker recognition system

A typical biometric recognition system consists of two
phases (see Fig. 3): the training phase (enrollment) and the
testing phase (recognition). In the training phase, biometric
measurements from the users are captured by means of biomet-
ric sensors or readers. Then, relevant information is extracted
from the biometric measurements (feature extraction) to build
a user model, which will be stored in a database.

Fig. 3. Architecture of a typical biometric recognition system.

In the recognition phase, biometric readers are also used
to capture biometric information of the user to be recognised.
Relevant information is extracted from the data provided by
the biometric sensors in the feature extraction step. This
information is compared with the stored user models of the
database, computing the degree of similarity (the term score is
also used). This similarity measure will be used to determine
whether the user corresponds to one of the users whose model
is stored in the database or not. Finally, a decision is taken
based on the computed similarity scores.

B. Feature extraction

Feature extraction or speech parameterisation in the speaker
verification field consists in transforming the speech signal into
a set of feature vectors [3]. The aim of this transformation is to
obtain a relatively low-dimensional representation, moresuit-
able for statistical modeling, the computation of a distance, or
any other kind of score (in order to enable comparisons using
simple similarity measures), while preserving the information
related to the identity of the speaker.

The most commonly used parameters in state-of-the-art
speaker and speech recognition technologies are the Mel-
Frequency Cepstral Coefficients (MFCC) [5], [6]. They are
a representation of the short-term power spectrum of a sound,
based on the linear cosine transform of the log power spectrum
on a nonlinear Mel scale of frequency (see Fig. 4).

Fig. 4. Mel-frequency cepstral coefficients computation steps



Commonly, speech processing in the speaker verification
task begins with a first order high-pass filtering of the speech
signal to emphasise high frequency components. Then, the sig-
nal is segmented in temporal frames and typically windowed
with a Hamming window to reduce the discontinuities in the
boundaries of the segmentation. This procedure is usually used
for short-term analysis of speech.

The first step for the computation of Mel-frequency cepstral
coefficients is performing the Discrete Fourier Transform
(DFT) of the speech frame. Usually a Fast Fourier Transform
is used to reduce the computation time.

The resulting values are then passed through a filterbank dis-
tributed along the frequency domain according to a Mel scale.
A vector of energy values is obtained with this step: the Filter
Bank Energies (FBE). The Mel scale, proposed by Stevens [7]
is based on the manner how the speech perception works in the
human ear. The human auditory system non-linearly resolves
frequencies across the audio spectrum. Empirical evidence
suggests that a system that operates in a similar nonlinear way,
obtaining the desired non-linear frequency resolution, provides
a better recognition performance.

The Mel scale filterbank is a series of Q triangular bandpass
filters that have been designed to simulate the bandpass
filtering by mimicking the human auditory response. The series
of constant bandwith triangular filters are 50% overlapped and
spaced on a Mel frequency scale. On a linear frequency scale,
the filter spacing is approximately linear in the range from 0
to 1000Hz, and logarithmic at higher values of frequency. The
triangles are all normalised to have unit area.

After applying this filterbank, the number of coefficients is
reduced, and hence the information is compacted. The variance
is also reduced when averaging the samples of the DFT in
each filter. Finally, a logarithmic compression and the Discrete
Cosine Transform (DCT) is applied to the vector of FBE in
order to obtain the MFCC.

The DCT serves two purposes. First, the DCT performs
the final part of a cepstral transformation which separates the
slowly varying spectral envelope (or vocal tract) information
from the faster varying speech excitation. MFCC only retains
the low order coefficients related to vocal tract.

The second purpose of the DCT is to decorrelate the
elements of the feature vector. Elements of the log filterbank
vector exhibit correlation due to both the spectral character-
istics of speech and the overlapping nature of the filterbank.
Such process makes the resulting decorrelated coefficientssuit-
able for the use of diagonal covariance matrices in statistical
classifiers.

Research on additional information sources in speaker
recognition has been mainly focused on the use of the
fundamental frequency as a complement to the vocal tract
information provided by MFCC. One of the reasons is the
robustness to acoustic degradations from channel and noise
effects [8], [9]. Arcienega et al. [10], for example, suggest
the use of F0-dependent speaker models. In the works of
Sönmez et al. [11] and Adami et al. [12], the variation of
fundamental frequency over time is modeled for its use in

a speaker recognition task, together with the signal energy
variation.

C. Statistical models

Gaussian mixture models (GMM) are commonly used as a
modeling technique in speaker verification systems. A GMM
is a weighted sum of gaussian density functions that models
the distribution of the feature vectors extracted from the speech
signal [13], [14]. Given a D-dimensional feature vectorx, the
Gaussian mixture modelλi corresponding to the speakerSi

is defined by the expression in Equation 1.

P (x|λi) =
M
∑

m=1

ωmN(x, µi
m,Σi

m) (1)

N(x, µ,Σ) is a gaussian function defined as shown in
Equation 2, whereµ is the vector of means andΣ the
covariance matrix.D is the number of elements in the D-
dimensional feature vectorx. M is the number of mixtures,
and ωm are the weights of each mixture, that must sum up
one.
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By means of dynamic programming algorithms, the prob-
ability that a sequence of speech frames was generated by
this model can be determined [15], [16]. This probability -or
likelihood- is used as a score for L frames of input speech
given the model [15], [16], [4].

In the recognition step, given a sequence of test feature
vectors X = [x1, x2, ..., xT ] extracted from an unknown
user’s speech, the probability of the unknown speaker being
the speakerSi (assuming that vectorsxt are independent) is
determined by the following expression in Equation 3, which
will be used as a similarity score.

p(X |λi) =

T
∏

t=1

P (xt|λi) (3)

D. Speaker verification system implementation

The speaker verification system implemented in this paper
consists of state-of-the-art approaches. Two main speech fea-
tures are used in the decision about the identity of the speaker:
MFCC (13 coefficients calculated from windows with256
samples, without window overlap) and fundamental frequency
(F0).

The proposed system performs cepstral mean substrac-
tion (CMS) to remove channel effects in MFCC parameters.
Fundamental frequency and two derived parameters, relative
jitter and relative shimmer, are also used in the likelihood
computation of the speaker under analysis. Jitter is a measure
of the periodic deviation in the voice signal, or the pitch
perturbation of the signal. Shimmer (amplitude perturbation)
is similar to jitter, but instead of looking at periodicity,it
measures the difference in amplitude from cycle to cycle.



Frame F0 JR SR LL
1 F01 JR1 SR1 LL1

2 F01 JR1 SR1 LL1

3 F01 JR1 SR1 LL1

... ... ... ... ...
M F0M JRM SRM LLM

Mean µF0 µJR µSR µLL

TABLE I
MEAN FEATURE VECTOR CALCULUS

Therefore, four parameters are extracted from each speech
frame to evaluate the identity of the speaker: fundamental
frequency, relative jitter, relative shimmer, and log-likelihood.
The later is calculated as the difference between the log-
likelihood of the feature vector (MFCC) for the claimed
identity model, and the log-likelihood of the feature vector
for the Universal Background Model (UBM). This UBM is
the impostor model. Such model must contain every possible
alternative to the speakerSi.

In this paper was used the approach that consists in training
the impostor model as a single model using several speak-
ers [17], [18], [19]. This model is usually called universal
background model (UBM), and when using Gaussian mixture
models, the method is known as the GMM-UBM approach.

The similarity score between the unknown speaker and the
claimed identity is performed comparing the mean vector of
speech features (fundamental frequency (F0), relative jitter
(JR), relative shimmer (SR), and log-likelihood (LL)) overall
frames of the spoken utterance, as shown in Table I.

The similarity score between the input feature vectorµ

and the templateSi is given by a distanced(µ, µSi
). The

distance measure between these two vectors can be expressed
asd(µ, µSi

) = (µ−µSi
)Σ(µ−µSi

). TheΣ weighting matrix is
the inverse covariance matrix corresponding to meanµSi

. This
distance is known as the Mahalanobis distance. A threshold
valueθ, the maximum allowable value for distanced(µ, µSi

),
is used to take the decision about the identity: known speaker
or impostor.

III. I MPLEMENTATION OF AN EMBEDDED SPEAKER

VERIFICATION

The diagram of Fig. 5 shows the different components
included in the embedded speaker verification system proposed
in this paper.

The biometric sensor of the system is a microphone. The
electric signal of the microphone is amplified and filtered to
increase the Signal-To-Noise Ratio and to prevent aliasing
during sampling.

The electric signal is sampled with the internal Analog-
to-Digital Converter included in the microcontroller (dsPIC
33FJ128GP802-E/SP). The sampling rate is 16KHz and the
resolution is 12 bits. The signal is segmented into frames of
256 samples, obtained using a double buffer DMA technique.

Each frame is processed to obtain different acoustic parame-
ters, such as energy, spectrum, MFCC, fundamental frequency,

Fig. 5. Embedded speaker verification system.

jitter of fundamental frequency, and shimmer of amplitude
values.

These features are analyzed using the reference models, that
are loaded into the dsPIC from an SD card. These models can
be changed and reloaded into the SD card using the training
software that creates a custom model for the specific user.

The system proposed in this paper was implemented using a
device dsPIC 33FJ128GP802-E/SP from Microchip. The main
features of this device are:

• 128KB of program memory. This makes it suitable for
use with cross compilers.

• 16KB of RAM. Of which 2KB are shared with direct
memory access (DMA) buffer as dual ported RAM.

• Up to 40 MIPS operation.
• Low cost. As mentioned before, its price is 4 US$, much

lower than a classic DSP. This is a great advantage
compared with comercial DSP devices.

• 16-bit wide data path.
• 12-bit@500ksps integrated analog-to-digital converter

(ADC).
• Double-buffered input/output registers. This allows for

faster operations on the ports (read-write), and also gives
more flexibility on the handling of them.

• In-Circuit Serial Programing and Debbuger. The device
can be programmed and configured in the end application
circuit.

• 28-pin SOIC packaging available. Allows for great levels
of integration.

A. Limitations in RAM memory of dsPIC

One of the main limitations to implement a speaker verifica-
tion in dsPIC is the limited amount of RAM memory. In order
to minimize the impact of such restriction, a number of aspects
were taken into account to optimize the use of memory.

Without any optimization in the use of variables in RAM
memory, the total amount of memory usage is shown in
Table II.

Variables Buffer and Data are the integer and floating point
representation of the frame under analysis. HammingWindow
has the precalculated values of a 256 point Hamming window.
The variables Sinus and Cosinus have the precalculated values



TABLE II
INITIAL MEMORY USAGE

Variable #elements type Memory (bytes)
Buffer 256 int 512
Data 256 float 1024
HammingWindow 256 float 1024
Sinus 256 float 1024
Cosinus 256 float 1024
Butterfly 256 char 256
RealFFT 256 float 1024
ImagFFT 256 float 1024
MFCCFilters 24x53 float 5088
DCT 24x13 float 1248
Autocorr 256 float 1024
MFCCCoefs 13 float 52
InvCovars 13x2x16 float 3328
Means 13x2x16 float 3328
Priors 2x16 float 256
Determinants 2x16 float 256
Total 21492 > 16KB

of a 256 point sinus and cosinus, and Butterfly has the
necessary information for the correct calculation of the Fast
Fourier Transform (FFT). The result of the FFT is put into the
variables RealFFT and ImagFFT.

The Mel-frequency cepstral coefficients are calculated with
the resulting spectrum of the FFT. The precalculated Mel scale
filterbanks can be found in the MFCCFilters variable, and the
final discrete cosine transform is computed using the DCT
variable (precalculated cosinus).

Gaussian mixture models are loaded into the RAM memory
of dsPIC from SD card into the variables InvCovars (inverse
of the covariance matrices), Means (mean vectors), Priors
(prior values of each gaussian mixture) and Determinants
(determinant of each covariance matrix).

As shown in the last line, the total amount of memory
necessary for our application is higher than the available
memory.

A careful analysis of the variables shows that HammingWin-
dow, MFCCFilters, DCT, and the routines that use them can
be hard coded into Program memory. This decision saves 7360
bytes of memory that may be used for better Gaussian Mixture
Models, that have a severe impact in the final performance of
the speaker verification task.

The Fast Fourier Transform is now calculated using Mi-
crochip’s subroutine FFTReal32bIP. This routine needs more
memory, but the real benefit is obtained in speed.

The variable Autocorr is only used to calculate the fun-
damental frequency, which is then used to estimate jitter
and shimmer parameters too. Therefore, Autocorr variable
may point to the same memory space as pwrspect (Power
Spectrum) variable , saving even more RAM memory. Actual
memory usage of the system is shown in Table III.

B. Limitations in MIPS of dsPIC

Another important issue for the implementation of a embed-
ded speaker verification system are the number of instruction
per second executed in a dsPIC. The 40 MHz clock only allows
40 MIPS. Therefore, a careful selection in the implementation
of the different routines is essential.

TABLE III
ACTUAL MEMORY USAGE

Variable #elements type Memory (bytes)
Buffer 256 int 512
Data 256 float 1024
HammingWindow Program memory 0
sigReal 256 long 1024
twdlFctr32b 768 long 3072
pwrspect/Autocorr 256 long 1024
MFCCFilters Program memory 0
DCT Program memory 0
MFCCCoefs 13 float 52
InvCovars 13x2x16 float 3328
Means 13x2x16 float 3328
Priors 2x16 float 256
Determinants 2x16 float 256
Total 13876 < 16KB

The original subroutine of Hamming window had this code:
int i;
for (i=0;i<bfrsize;i++)
{

data[i]=data[i]*win[i];
}

The new subroutine of Hamming window has all the values
hard-coded, with a benefit in memory usage and speed. The
sample values of the Hamming window are literals (reduction
in the usage of RAM memory), and the comparison and
increment of for loop are not necesssary (increment in speed).
data[0]*=0.08f;
data[1]*=0.0801396318543067f;
data[2]*=0.0805584426474237f;
...
The same approach was used to implement the subroutines

to calculate Mel-frequency cepstral coefficients, with a benefit
RAM usage and speed. The original subroutines took 18.7ms
to calculate the MFCC for a frame, while the new hard coded
subroutine only takes 5.36ms.

The use of Microchip’s subroutine for Fast Fourier Trans-
form (FFTReal32bIP) has an important benefit in speed. The
original subroutine coded in C had a duration of 64ms to obtain
the power spectrum of a frame, while the new subroutine that
includes the code proposed by Microchip only takes 5.36ms.

The integer implementation of autocorrelation was the final
improvement in the code to process a frame and calculate all
the necessary parameters to take a decision in the speaker
verification task. The total time to process a frame is 59ms.
The total time for the decision of the system depends on
the duration of the utterance (without initial and ending
silences). It may be estimated as3.6 times the duration of
the vocalization.

C. Speaker verification results

Several experiments were conducted using MATLAB and
train-validation-test sets to study different algorithmsfor
speaker verification systems, mainly focused in the opti-
mization of the number of gaussian mixtures. GMM were



trained using the standard Baum-Welch algorithm and diagonal
covariance matrices.

The source code was written using both MATLAB and
C30 sintaxis, and possible differences in the calculation of
the algorithms was checked. The differences remain small and
negligible.

Available speech from168 speakers was divided into train
and test sets. Both sets have different words, in order to build
and test a text-independent speaker verification system.

The chosen architecture was tested using n-fold cross
validation to obtain the ROC curve. The receiver operating
characteristic (ROC), or simply ROC curve, is a graphical plot
of the sensitivity, or true positive rate versus false positive rate
for a binary classifier system as its discrimination threshold is
varied.

The ROC for the proposed system is shown in Fig. 6.
As explained in Section II, when designing a biometric ver-
ification system, the decision threshold must be adjusted to
minimize false positives and false negatives. In our task, false
positives should remain below threshold to prevent an impostor
acceptance.

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

FAR (in %)

F
R

R
 (

in
 %

)

Fig. 6. ROC curve for the embedded speaker verification system.

IV. CONCLUSIONS

In this paper was described an embedded speaker verifica-
tion system. The system is built in a low cost dsPIC from
Microchip, which has characteristics of DSPs in a single 16-
bit high-performance core. The speaker verification systemis
intended to operate an electrical door lock, through an electric
lock driving circuit.

Experiments were performed using MATLAB to find the
ROC curve of the proposed system, to get an approximation of
the expected performance. Experimental results show that the
system may reject impostor at the expense of also rejecting a
user with the correct claimed identity. For example, the speaker
verification system has a false acceptance rate of 8% for a false
rejection rate of 12%. Actually, the proposed system can only

be used as an auxiliary identification technique, and not as a
primary identification technology, due to these low results.

Future work will focus in two main aspects: response time
and better identification performance. Response time is an
important issue in this 40 MIPS speaker verification system,
and improvements can be achieved through the use of inline
assembler inside C language.

Better identification performance will be faced with new
speaker verification techniques, which may involved additional
features, different modeling techniques, and signal condition-
ing algorithms.
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