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Abstract— The increasing amount of musical
data approaching the scale of tens of millions of
tracks poses the challenge of organizing such a
huge amount of information. Audio Tag Classi-
fication is a sub-area in Music Information Re-
trieval. It’s objective is being able to predict
human motivated tags given the acoustic data.
One major problem in this attempt is training
a classifier. An important step in training a
model is the selection of the appropriate acous-
tical features. This paper explores two selec-
tion approaches: spitting and lazy spitting. Ex-
perimental results indicate that the proposed
lazy spitting algorithm has a superior perfor-
mance both in classification (F-measure score)
and speed (lower computational requirements).

Keywords— music information retrieval,
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1 INTRODUCTION

Music is one of the most popular types of online infor-
mation and there are now hundreds of music streaming
and download services operating on the World-Wide
Web. Some of the music collections available are ap-
proaching the scale of ten million tracks and this has
posed a major challenge for searching, retrieving, or-
ganizing music content, and developing methods for
managing collections of musical material for preserva-
tion, access, research, and other uses [3][8]. Motivated
by this challenges, an interdisciplinary area known as
Music Information Retrieval (MIR) has emerged, en-
compassing areas such as computer science and infor-
mation retrieval, musicology and music theory, audio
engineering and digital signal processing, cognitive sci-
ence, library science, publishing, and law [8].

The idea of applying automatic information retrieval
(IR) techniques to music actually dates back to the
1960′s [9]. But in particular, MIR has been growing

during the past decade out of an explosion of interest
in networked collections of musical material in digital
form [8]. Consider, for example, the task of organiz-
ing a large music repository. This is a tedious and
time-intensive job, especially when the traditional so-
lution of manually annotating semantic data to the
audio is chosen [10]. These semantic data are com-
monly referred to as tags. Many published results
show that this problem can be tackled using machine
learning techniques but it seems, however, that no one
has yet found an appropriate algorithm to solve this
challenge [2]. The problem of predicting these tags
is called automatic tagging. Different groups have
been trying to tackle the problem, yet there have been
few attempts at uniting the community behind a clear
shared task definition. This was partially addressed at
MIREX 2008. MIREX stands for Music Information
Retrieval Evaluation eXchange, a set of contests held
each year at the International Conference on Music
Information Retrieval (ISMIR) [2].

When trying to address this problem in terms of ma-
chine learning, it is first necessary to determine what
set of words people would be likely to use to describe
a song and then train a system that can automatically
predict what subset of those words better describes a
given song. An attempt to solve the first problem has
been made by Mandel and Ellis [12] by creating an on-
line game to harvest this descriptions. Analyzing the
results they built a dataset known as MajorMiner.

This paper focuses on the problem of tag predic-
tion or automatic tagging using MajorMiner to train
a classifier. This classifier is going to be fed by a
set of features such as: Mel Frequency Cepstral Co-
efficients (MFCC), Spectral Roll-Off, Zero-Crossings
Rate (ZCR), etc. These features are computed for
each audio frame of a given song which are considered
in a collection that ignores their order (bag-of-frames
approach). Later on they are aggregated by comput-
ing their mean and standard deviation values. The
goal in this paper is to select the optimal combination
of acoustical features for each tag, and two approaches
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are explored: spitting and lazy spitting.
This paper is organized as follows. Section 2 de-

scribes the task of automatic audio tagging, explain-
ing briefly each subtask. At the end of this section,
the proposed feature selection algorithm is shown. Sec-
tion 3 shows the experimental results with the spitting
and lazy spitting feature selection approaches. Finally,
conclusions and future work are drawn in Section 4.

2 AUTOMATIC AUDIO TAGGING

The task of automatic audio tagging consists of label-
ing a set of songs with a predefined group of tags. A
tag is a user generated keyword associated with some
resource, in this case audio. In general, audio tracks
(or segments of a track) are tagged, but it is also pos-
sible to talk about tagging albums or artists by aggre-
gating predictions made over tracks.

This task can be divided in several subtasks: cre-
ating a corpus of labeled data used as example, ex-
tracting useful acoustic features, training a classi-
fier using machine learning techniques, and evaluating
the performance of the resulting classifier using cross-
validation techniques and classification measures.

2. 1 Corpus of labeled data

A proper dataset of labeled [audio,tag] pairs is neces-
sary to let machine learning techniques find relation-
ships between acoustic features and tags. The ma-
chine learning assumption is that if enough examples
are shown to an algorithm, the correlation between
acoustic features and tags will become clear. How-
ever, the following trade-off remains: gathering more
examples help, but as a consequence it is necessary
to explore less reliable sources to do so. For instance,
tags applied by music companies are usually of little
value since they are chosen according to commercial
interests instead of the music itself.

There have been many attempts to build datasets.
In the procedure for the generation of the Ma-
jorMiner [12] dataset, users get points if they are the
first or second person to use a tag on a particular ex-
cerpt. This avoids usage of random, unrelated, or de-
liberately erroneous tags. Cheating is always possible,
but there are ways to counter it, usually by tracking a
user behavior over some time. Data acquired this way
are usually very clean, but still many orders of magni-
tude smaller in size than social tags produced by other
resources, such as Last.fm.

2. 2 Useful audio features

There are many audio features proposed in the liter-
ature that range from time domain based features to
spectral based features. This paper uses an in house
feature extractor named Ursula which generates the
following features:

• Linear Predictive Coding Coefficients: it is a
tool used mostly in audio signal processing and
speech processing for representing the spectral

envelope of a digital signal of speech in a com-
pact form, using the information of a linear pre-
dictive model.

• Line Spectral Pairs: they are used to represent
linear prediction coefficients (LPC) for transmis-
sion over a channel. LSPs have several properties
(e.g. smaller sensitivity to quantization noise)
that make them superior to direct quantization
of LPCs.

• Mel-frequency cepstrum coefficients: they repre-
sent the short-term power spectrum of a sound,
based on a linear cosine transform of a log power
spectrum on a nonlinear frequency mel scale.

• Spectral centroid: it is a measure used in digital
signal processing that indicates where the “cen-
ter of mass” of the spectrum is located.

• Spectral flux: it is a measure of how quickly the
power spectrum of a signal is changing, calcu-
lated by comparing the power spectrum for one
frame against the power spectrum from the pre-
vious frame.

• Spectral flatness: it is a measure used in digital
signal processing to characterize an audio spec-
trum and quantify how tone-like a sound is, as
opposed to being noise-like.

• Spectral crest factor: it indicates how flat or
“peaky” the power spectral density is in a given
sub-band.

These features are aggregated into texture windows
with a length ofM frames. The aggregation consists in
calculating the mean and standard deviation for each
acoustic feature within each texture window, result-
ing in two sequences (mean and std) for each feature.
Later on, each sequence is collapsed into a single fea-
ture vector representing the entire audio clip by tak-
ing again the mean and standard deviation of each se-
quence. This process produces mean-mean, mean-std,
std-mean and std-std values for each acoustic feature
of the clip. This approach is the same one used by the
software Marsyas which is one of the most widely used
tools for MIR [5].

2. 3 Training a classifier using machine
learning

The central part of any automatic tagging algorithm
is the model that links tags to audio features. Being
as general as possible, any method that finds (possi-
bly highly complex) correlations between the tags and
audio features can be seen as a machine learning algo-
rithm and be applied to automatic tagging.

Support vector machines (SVMs) are one of the
most widely used machine learning algorithms, and
they have shown to be a useful technique in the task of
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music classification [2][11][13]. A support vector ma-
chine constructs a hyperplane or set of hyperplanes
in a high or infinite dimensional space, which can be
used for classification, regression, or other tasks. Intu-
itively, a good separation is achieved by the hyperplane
that has the largest distance to the nearest training
data points of any class (so-called functional margin).
In general, the larger the margin the lower the gener-
alization error of the classifier.

Figure 1: Maximum-margin hyperplane and margins
for an SVM trained with samples from two classes.

In many supervised learning problems, feature se-
lection is important for a variety of reasons: general-
ization performance, running time requirements, and
constraints and interpretational issues imposed by the
problem itself. Support Vector Machines are not an
exception. It is important to select a subset of fea-
tures while preserving or improving the discriminative
ability of a classifier. As a brute force search of all
possible features is a combinatorial problem, it is nec-
essary to take into account both the quality of solution
and the computational expense of any given algorithm.

Greedy methods are a simple heuristic solution to
such problem. The number of features included in the
feature vector grows step by step, each stage taking
the results of the previous stage into account. The
greedy algorithm begins with an empty initial feature
vector, and in each stage appends an additional feature
that contributes to a better global performance of the
classifier.

A different approach is taken by François [7]; instead
of “eating” features, they train with all of them and
in each iteration they “spit” the most useless one, af-
ter that they re-train with the new set of features and
keep on spitting until they stop according to some pre-
defined criteria. They called this the spitting method.

The algorithm proposed in this paper shares the
spitting behavior, but features are only marked to

be spat. Later on the SVM is re-optimized when all
marked features are finally deleted (or spat). This al-
gorithm, named lazy spitting method, begins with a
full feature vector, and in just one stage deletes all the
features that once removed do not impact in the global
result of the classifier.

A more detailed description of the steps of the lazy
spitting training algorithm are:

• Initialization All features are included in the
initial vector, and optimal parameters C and W

of the SVM are estimated using a grid search
algorithm. C > 0 is the penalty parameter of the
error term of the classifier, and W is a penalty
of the wrong classification for positive (+1) and
negative (-1) examples.

• Feature evaluation Each feature is momentar-
ily deleted to evaluate the impact in the global
performance of the classifier. If such perfor-
mance is better, the feature is marked for future
deletion.

• Feature deletion All feature marked for dele-
tion are removed from the feature vector.

• Final parameter tuning Optimal parameters
C and W of the SVM are estimated using a grid
search algorithm with the remaining features in
the input vectors.

The reasoning behind the proposed method is the
stability of the optimal parameters C and W after the
deletion of one feature. If such parameters are still
optimal after the removal, the analysis of the impor-
tance of such feature will not be misleaded. However,
the multiple remotion in the third step may lead to
a suboptimal classifier if C and W are kept the same.
Hence, it is necessary to perform a new parameter tun-
ing to obtain a final optimal classifier. The algorithm,
doesn’t impose a stopping criteria. As it is discussed in
Section 3. 4, a single-pass implementation was chosen.

3 EXPERIMENTS

The experiments performed in this paper are focused
in the evaluation of the improvement in the classifica-
tion scores of SVMs by the selection of the appropriate
features for each tag using spitting and lazy spitting
algorithms.

3. 1 Classification Model

The classification model is a SVM with a variable size
input feature vector and one output that can get the
values +1 when the tag is set in the clip, and -1 if it
is not set. One SVM is individually trained for each
tag, using the feature selection and parameter tuning
algorithm shown in Section 2.

The SVM software used in the experiments is LIB-
SVM [4]. LIBSVM is a library for Support Vector
Machines (SVMs) that has gained wide popularity in
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machine learning and many other areas. The parame-
ters tuned in the linear kernel used in the experiments
were C and W .

3. 2 Dataset

MajorMiner tags dataset was used in the experiments.
The tags included in this corpus belong to the follow-
ing categories:

• Genre (e.g: rock, pop, electronic, hip hop).

• Style (e.g: drum-and-bass).

• Instruments (e.g: piano, drum-machine,
strings).

• Tempo (e.g: fast, slow).

• Dynamics (e.g: loud, soft).

• Vocal style (e.g: vocal, vocals).

The MajorMiner game has collected a total of about
73000 taggings, 12000 of which have been verified by
at least two users. In these verified taggings, there are
43 tags that have been verified at least 35 times, for
a total of about 9000 verified uses. The music of this
corpus consists of 2300 clips selected at random from
3900 tracks.

3. 3 Evaluation Metrics

In the context of classification tasks, the terms true
positives (tp), true negatives (tn), false positives (fp)
and false negatives (fn) are used to compare the clas-
sification of an item (the tag assigned to the item by
a classifier) with the desired correct classification (the
tag the item actually belongs to).

Precision and recall are then defined as:

Precision =
tp

tp+ fp
(1)

Recall =
tp

tp+ fn
(2)

A measure that combines precision and recall is the
harmonic mean of precision and recall, the traditional
F-measure or balanced F-score:

F = 2 ·
precision · recall

precision + recall
(3)

F-measure is the performance metric used in this
paper. A more detailed insight on the F-measure can
be found at Downie et al. [6].

3. 4 Performed experiments

In this paper we performed five experiments which are
detailed below:

• Best model (BEST). This experiment eval-
uates how good the lazy spitting method can
perform when it knows the best C and W pa-
rameters, and acoustic features. These parame-
ters and features set are obtained using the pro-
posed method but the optimization is performed
by looking at the test set and obtaining the F-
measure from it. Doing this modification the re-
sults are biased towards the testing data. It is an
oracle behavior in the training to discover “How
high is the sky?” [1] for this particular problem.

• No feature selection (NS). No selection of
acoustic features for deletion is also explored to
uncover the usefulness of spitting and lazy spit-
ting algorithms. In these experiments only C

and W were optimized.

• Spitting algorithm (SP). Approach proposed
by François [7]; instead of “eating” features, they
train with all of them and “spit” the most use-
less one, they re-train with the new set of fea-
tures and keep on spitting until they stop ac-
cording to some predefined criteria. In this case,
the used criteria is to iterate until the F-measure
decreases, in which case we keep the previous
feature set.

• Lazy spitting algorithm (LSP). Approach
proposed in this paper to reduce the training
speed time. In order to meet the time require-
ments imposed by MIREX a single-pass imple-
mentation was adopted.

3. 5 Results

The experimental results with twenty fold cross-
validation is shown in Table 1. The first column shows
the tags under evaluation. Second, third, fourth and
fifth columns show the mean of the F-measure score of
the folds for BEST, NS, SP and LSP experiments. The
tags are ordered according to their relative frequency.
Drums is the more frequent tag, and r&b (rhythm and
blues) is the less frequent.

The sixth column (LSP vs NS) is the difference be-
tween the mean F-measure of the third column (No
Selection) and the fifth column (Lazy Spitting). The
red color indicates that the mean F-measure of the
spitting algorithm is worse than the mean F-measure
of the NS experimental condition.

The results indicate a higher number of positive dif-
ferences in the mean F-measure in favor of the lazy
spitting algorithm. Therefore, after these experiments,
it is possible to conclude that the lazy spitting algo-
rithm has a superior performance compared to the no
selection approach for these experimental conditions.

The seventh column (LSP vs SP) shows the differ-
ence between the mean F-measure of the fourth col-
umn (Spitting) and the fifth column (Lazy Spitting).
These results also indicate a higher number of positive
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differences in the mean F-measure in favor of the lazy
spitting algorithm. Therefore, the lazy spitting algo-
rithm has a superior performance compared with the
spitting approach for these experimental conditions.

The global results in terms of F-measure reveal that
the lazy spitting algorithm has a positive difference
with respect to no selection and spitting approaches.
Such difference is significant and encourages the use of
lazy spitting algorithm in future MIREX meetings.

Lazy spitting algorithm also has an important ad-
vantage in terms of training speed. The experiments
were run on a AMDTMAthlon II X4 640 Processor
(3GHz) with 8GB RAM. Table 2 shows the minimum,
average and maximum times to train all the classi-
fiers for each fold. The methods shown are just the
two spitting algorithms under evaluation. The train-
ing time for lazy spitting algorithm is 33% faster than
the spitting approach because it removes the unim-
portant features in just one stage. Although the gain
in time might seem small, when the experiments take
days to be executed, such gain becomes important.

Table 2: Spitting methods speed performance (in sec-
onds)

Method Min Average Max
Spitting method 844 892 920

Lazy spitting method 645 665 700

4 CONCLUSIONS

Experimental results show that the proposed lazy spit-
ting algorithm has better F-measure scores that the
baseline spitting algorithm. Another important result
is the 33% gain in the training time, which is cru-
cial to participate in MIREX (24hs limitation to train
a fold). Although a significance test is necessary to
confirm such superiority in terms of F-measure, given
that it systematically yields better results we specu-
late it performs at least as well as the original spitting
method. Therefore, whether it gets a better F-measure
or not, it is an advantageous approach taking into ac-
count its speed and the time limitations imposed in
the MIREX competitions.

Future work will focus in the evaluation of addi-
tional acoustic features and aggregation techniques to
improve F-measure scores.
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