
Low-Density Parity-Check Codes. Detailed solutions to problems

8.1) a) there are at least 7 cycles of length 4; the´1´s involved in these cycles are seen in

matrix H below:

































=

110100010000

00100000

0001100010

0000010100

010000000

000001000

0001000010

00010100

1111

11

11

111

111

11

1111

H

b) In order to maintain 3s = , ´1´s should be moved along the columns by replacement of

´0´s by ´1´s and vice versa, in the same column. Every position of a ´0´ in the above

matrix can not be filled by replacement with a ´1´ unless another cycle is formed.

c) In general, it will correspond to another code.

8.2) a) The rank of the matrix (that is, the number of linearly independent columns or rows

of the matrix) is 4. The addition (in the binary field) of columns 1, 2, 3 and 6 is the all zero

vector, thus the rank of this matrix is 4.

The cyclic parity check matrix is



















=

1011000

0101100

0010110

0001011

H .

The parity check matrix in systematic form is obtained by performing row operations over

the above matrix. Thus, the following operations:

3row4row3row

2row4row3row2row

1row3row2row1row

⇒+

⇒++

⇒++

generates the matrix in systematic form:

Low-Density Parity-Check Codes. Detailed solutions to problems



















=

1011000

1110100

1100010

0110001

sysH

The corresponding generator matrix is obtained taking into account that when the form of

the parity check matrix is []T

knsys PIH
−

= , the generator matrix of the block code is

[]ksys IPG = . Thus:

















=

1001110

0100111

0011101

sysG

b) The average number of 1’s per row is 3v = , and the average number of 1’s per column

is 7/12s = in the cyclic PC matrix. The average number of 1’s per row is 4/13v = , and

the average number of 1’s per column is 7/13s = in the systematic PC matrix. The code

rate for the cyclic PC code is:

7

3

7x3

9

3

7/123

v

sv

n

k
==

−
=

−
=

The code rate for the systematic PC code is:

7

3

28x13

4x)5291(

4/13

7/134/13

v

sv

n

k
=

−
=

−
=

−
=

The code rate is equal to 7/3n/k = , obtained for instance from the size of the

corresponding generator matrix.

Low-Density Parity-Check Codes. Detailed solutions to problems

The table of non-zero codewords and their corresponding weights for this code is the

following:

 w

0 1 1 1 0 0 1 4

1 1 1 0 0 1 0 4

1 0 0 1 0 1 1 4

1 0 1 1 1 0 0 4

1 1 0 0 1 0 1 4

0 1 0 1 1 1 0 4

0 0 1 0 1 1 1 4

Since the code is linear, the minimum weight is also the minimum distance of the code,

thus, 4d
min

= .

c) The Tanner graph for the cyclic PC code is seen in the following figure. A cycle of the

shortest length, 6, is seen in bold line. There are no cycles of length 4.

1 2 3 4 5 6 7

1 2 3 4

Symbol nodes jd

Parity check nodes ih

Low-Density Parity-Check Codes. Detailed solutions to problems

The Tanner graph for the systematic PC code is seen in the following figure. A cycle of the

shortest length, 4, is seen in bold lines.

The best option for a LDPC code decoded using the SPA is the cyclic PC matrix, since the

shortest length of a given cycle (in this case 6) is longer than for the systematic PC matrix

(shortest cycle of length 4) .

8.3) a) The code vector for the message vector)100(=m is the first row of the generator

matrix sysG , that is, ()1011100=c .

b) The following is a detail of calculations for the cyclic graph, for the two first iterations.

The first step is to determine coefficients 0

jf and 1

jf . The following table shows these

values:

1 2 3 4 5 6 7

1 2 3 4

Symbol nodes jd

Parity check nodes ih

Low-Density Parity-Check Codes. Detailed solutions to problems

 1 2 3 4 5 6 7

0

jf 0.0358 0.4059 0.0013 0.0050 0.4055 0.4256 0.3151

1

jf 0.4432 0.0873 0.2181 0.3292 0.0134 0.0679 0.1673

These coefficients allow us to determine the values of 0

ijQ and 1

ijQ in the initialization:

0

ijQ 1 2 3 4 5 6 7

1 0.0358 0.4059 0 0.0050 0 0 0

2 0 0.4059 0.0013 0 0.4055 0 0

3 0 0 0.0013 0.0050 0 0.4256 0

4 0 0 0 0.0050 0.4055 0 0.3151

1

ijQ 1 2 3 4 5 6 7

1 0.4432 0.0873 0 0.3292 0 0 0

2 0 0.0873 0.2181 0 0.0134 0 0

3 0 0 0.2181 0.3292 0 0.0679 0

4 0 0 0 0.3292 0.0134 0 0.1673

Using the Mackay-Neal modified SP algorithm, we can also determine coefficients ijRδ .

Here starts the iterative process of decoding:

Low-Density Parity-Check Codes. Detailed solutions to problems

ijRδ 1 2 3 4 5 6 7

1 -0.1033 0.1321 0 -0.1298 0 0 0

2 0 -0.0850 0.1249 0 -0.0691 0 0

3 0 0 -0.1160 -0.0775 0 0.0703 0

4 0 0 0 0.0580 -0.0479 0 -0.1271

 Values of 0

ijR and 1

ijR in the first iteration are now determined:

0

ijR 1 2 3 4 5 6 7

1 0.4483 0.5660 0 0.4351 0 0 0

2 0 0.4575 0.5625 0 0.4655 0 0

3 0 0 0.4420 0.4612 0 0.5351 0

4 0 0 0 0.5290 0.4760 0 0.4364

1

ijR 1 2 3 4 5 6 7

1 0.5517 0.4340 0 0.5649 0 0 0

2 0 0.5425 0.4375 0 0.5345 0 0

3 0 0 0.5580 0.5388 0 0.4649 0

4 0 0 0 0.4710 0.5240 0 0.5636

And then values of 0

ijQ and 1

ijQ can be updated:

Low-Density Parity-Check Codes. Detailed solutions to problems

0

ijQ 1 2 3 4 5 6 7

1 0.0748 0.7968 0 0.0145 0 0 0

2 0 0.8585 0.0047 0 0.9648 0 0

3 0 0 0.0077 0.0130 0 0.8623 0

4 0 0 0 0.0100 0.9633 0 0.6533

1

ijQ 1 2 3 4 5 6 7

1 0.9252 0.2032 0 0.9855 0 0 0

2 0 0.1415 0.9953 0 0.0352 0 0

3 0 0 0.9923 0.9870 0 0.1377 0

4 0 0 0 0.9900 0.0367 0 0.3467

a decision can be taken in the first iteration, by calculating coefficients of the estimates 0

jQ

and 1

jQ :

 1 2 3 4 5 6 7

0

jQ 0.0161 0.1051 0.0003 0.0005 0.0899 0.2277 0.1375

1

jQ 0.2445 0.0205 0.0532 0.0472 0.0038 0.0316 0.0943

The decoded vector is then:

()0001101d iter rst1 =

This estimation results into a non zero syndrome, and iterations will continue.

The decoded message in this first iteration is ()000m iter rst1 =

Low-Density Parity-Check Codes. Detailed solutions to problems

The second iteration starts with the calculation of the updated values of ijRδ :

ijRδ 1 2 3 4 5 6 7

1 -0.5765 0.8258 0 -0.5049 0 0 0

2 0 -0.9208 0.6665 0 -0.7102 0 0

3 0 0 -0.7058 -0.7136 0 0.9590 0

4 0 0 0 0.2840 -0.3004 0 -0.9082

 Values of 0

ijR and 1

ijR in the second iteration are now determined:

0

ijR 1 2 3 4 5 6 7

1 0.2117 0.9129 0 0.2476 0 0 0

2 0 0.0396 0.8332 0 0.1449 0 0

3 0 0 0.1471 0.1432 0 0.9795 0

4 0 0 0 0.6420 0.3498 0 0.0459

Low-Density Parity-Check Codes. Detailed solutions to problems

1

ijR 1 2 3 4 5 6 7

1 0.7883 0.0871 0 0.7524 0 0 0

2 0 0.9604 0.1668 0 0.8551 0 0

3 0 0 0.8529 0.8568 0 0.0205 0

4 0 0 0 0.3580 0.6502 0 0.9541

And then values of 0

ijQ and 1

ijQ can be updated:

0

ijQ 1 2 3 4 5 6 7

1 0.0748 0.1609 0 0.0046 0 0 0

2 0 0.9799 0.0010 0 0.9420 0 0

3 0 0 0.0291 0.0089 0 0.8623 0

4 0 0 0 0.0008 0.8364 0 0.6533

1

ijQ 1 2 3 4 5 6 7

1 0.9252 0.8391 0 0.9954 0 0 0

2 0 0.0201 0.9990 0 0.0580 0 0

3 0 0 0.9709 0.9911 0 0.1377 0

4 0 0 0 0.9992 0.1636 0 0.3467

Low-Density Parity-Check Codes. Detailed solutions to problems

a decision can be taken in the second iteration, by calculating coefficients of the estimates

0

jQ and 1

jQ :

 1 2 3 4 5 6 7

0

jQ 0.0076 0.0147 0.0002 0.0001 0.0206 0.4169 0.0145

1

jQ 0.3493 0.0073 0.0310 0.0760 0.0075 0.0014 0.1596

The decoded vector is then:

()1001101d iter nd2 =

This estimation results into a non zero syndrome, and iterations will continue.

The decoded message in this second iteration is ()100m iter nd2 = .

The above described calculations can be also performed for the following iterations. The

decoded vectors in the following iterations are:

Third iteration: ()1011101d iter rd3 = , decoded message ()101m iter rd3 =

Fourth iteration: ()1011100d iter th4 = , decoded message ()001m iter th4 = , successful

decoding, syndrome is zero.

In the case of the systematic graph, the decoded vectors in successive iterations are:

first iteration: ()1011000d iter rst1 = ,

second iteration ()1011011d iter nd2 = ,

third iteration: ()1011011d iter rd3 = ,

fourth iteration: ()1011000d iter th4 = ,

fifth iteration: ()10110101d iter th5 = ,

sixth iteration: ()1011101d iter th6 = , unsuccessful decoding in six iterations.

Low-Density Parity-Check Codes. Detailed solutions to problems

8.4) a) The decoder can determine after a little number of iterations the output vector,

decoded bit by bit. The solution provided by the decoder is not a codeword, and there are

also convergence problems, since the iterative decoding provides always the same

decoded vector after a given number of solutions. It would reach the maximum number of

iterations giving this solution at the end of the decoding. After a little number of iterations,

the estimates for each bit are the following:

 1 2 3 4 5

0

jQ 0.1019 0.4091 0.0990 0.4091 0.1855

1

jQ 0.0990 0.0091 0.1019 0.0091 0.0046

The decoded vector is ()00100d = , which is not a code vector. Estimates for bits

1 and 3 are however quite close to each other, and slight differences in their values can

make the decoded vector be one of two codewords that are ()00000c1 = (the

transmitted codeword) and ()00101c2 = . Estimates for bits at positions 2, 4 and 5

are however very well defined.

This performance can be seen by using the program codec_ldpc_P_8_4_ch8.m, which

can be downloaded form the website of the book.

b) The decoder can not be efficient for large number of iterations because of the

characteristics of the code. Connections between symbol nodes and parity check nodes

are not enough for effective belief propagation.

