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8.1) a) there are at least 7 cycles of length 4; the´1´s involved in these cycles are seen in 

matrix H  below: 
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b) In order to maintain 3s = , ´1´s should be moved along the columns by replacement of 

´0´s by ´1´s and vice versa, in the same column.  Every position of a ´0´ in the above 

matrix can not be filled by replacement with a ´1´ unless another cycle is formed. 

c) In general, it will correspond to another code. 

8.2) a) The rank of the matrix (that is, the number of linearly independent columns or rows 

of the matrix) is 4. The addition (in the binary field) of columns 1, 2, 3 and 6 is the all zero 

vector, thus the rank of this matrix is 4. 

The cyclic parity check matrix is 
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The parity check matrix in systematic form is obtained by performing row operations over 

the above matrix. Thus, the following operations: 

3row4row3row

2row4row3row2row

1row3row2row1row

⇒+

⇒++

⇒++

 

 

generates the matrix in systematic form: 
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The corresponding generator matrix is obtained taking into account that when the form of 

the parity check matrix is [ ]T

knsys PIH
−

= , the generator matrix of the block code  is 

[ ]ksys IPG = . Thus: 
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b) The average number of 1’s per row is 3v = , and the average number of 1’s per column 

is 7/12s =  in the cyclic PC matrix.   The average number of 1’s per row is 4/13v = , and 

the average number  of 1’s per column is 7/13s =  in the systematic PC matrix.   The code 

rate for the cyclic PC code is: 
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The code rate for the systematic PC code is: 
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The code rate is equal to 7/3n/k = , obtained for instance from the size of the 

corresponding generator matrix. 
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The table of non-zero codewords and their corresponding weights for this code is the 

following: 

 

        w 

0 1 1 1 0 0 1  4 

1 1 1 0 0 1 0  4 

1 0 0 1 0 1 1  4 

1 0 1 1 1 0 0  4 

1 1 0 0 1 0 1  4 

0 1 0 1 1 1 0  4 

0 0 1 0 1 1 1  4 

 

Since the code is linear, the minimum weight is also the minimum distance of the code, 

thus, 4d
min

= . 

c) The Tanner graph for the cyclic PC code is seen in the following figure. A cycle of the 

shortest length, 6, is seen in bold line. There are no cycles of length 4. 
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The Tanner graph for the systematic PC code is seen in the following figure. A cycle of the 

shortest length, 4, is seen in bold lines.  

 

 

 

 

 

 

 

 

 

 

The best option for a LDPC code decoded using the SPA is the cyclic PC matrix, since the 

shortest length of a given cycle (in this case 6) is longer than for the systematic PC matrix 

(shortest cycle of length 4) . 

 

8.3) a) The code vector for the message vector )100(=m  is the first row of the generator 

matrix sysG , that is, ( )1011100=c . 

 

b) The following is a detail of calculations for the cyclic graph, for the two first iterations. 

The first step is to determine coefficients 0

jf  and 1

jf . The following table shows these 

values: 

 

 

1  2  3  4  5  6  7  

1  2  3  4  

Symbol nodes jd  

Parity check nodes ih  
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 1 2 3 4 5 6 7 

0

jf  0.0358 0.4059 0.0013 0.0050 0.4055 0.4256 0.3151 

1

jf  0.4432 0.0873 0.2181 0.3292 0.0134 0.0679 0.1673 

 

These coefficients allow us to determine the values of 0

ijQ  and 1

ijQ  in the initialization: 

 

0

ijQ  1 2 3 4 5 6 7 

1 0.0358 0.4059 0 0.0050 0 0 0 

2 0 0.4059 0.0013 0 0.4055 0 0 

3 0 0 0.0013 0.0050 0 0.4256 0 

4 0 0 0 0.0050 0.4055 0 0.3151 

 

1

ijQ  1 2 3 4 5 6 7 

1 0.4432 0.0873 0 0.3292 0 0 0 

2 0 0.0873 0.2181 0 0.0134 0 0 

3 0 0 0.2181 0.3292 0 0.0679 0 

4 0 0 0 0.3292 0.0134 0 0.1673 

 

Using the Mackay-Neal modified SP algorithm, we can also determine coefficients ijRδ . 

Here starts the iterative process of decoding: 
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ijRδ  1 2 3 4 5 6 7 

1 -0.1033 0.1321 0 -0.1298 0 0 0 

2 0 -0.0850 0.1249 0 -0.0691 0 0 

3 0 0 -0.1160 -0.0775 0 0.0703 0 

4 0 0 0 0.0580 -0.0479 0 -0.1271 

 

   Values of 0

ijR  and 1

ijR  in the first iteration are now determined: 

 

0

ijR  1 2 3 4 5 6 7 

1     0.4483    0.5660         0 0.4351         0 0 0 

2 0 0.4575    0.5625         0 0.4655       0 0 

3 0 0 0.4420    0.4612         0 0.5351         0 

4 0 0 0 0.5290    0.4760         0 0.4364 

 

1

ijR  1 2 3 4 5 6 7 

1     0.5517           0.4340         0 0.5649         0 0 0 

2 0 0.5425    0.4375         0 0.5345     0 0 

3 0 0 0.5580    0.5388         0 0.4649         0 

4 0 0 0 0.4710    0.5240         0 0.5636 

 

And then values of 0

ijQ  and 1

ijQ   can be updated: 
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0

ijQ  1 2 3 4 5 6 7 

1 0.0748    0.7968         0 0.0145         0 0 0 

2 0 0.8585    0.0047         0 0.9648         0 0 

3 0 0 0.0077    0.0130         0 0.8623         0 

4 0 0 0 0.0100    0.9633         0 0.6533 

 

1

ijQ  1 2 3 4 5 6 7 

1 0.9252    0.2032       0 0.9855         0 0 0 

2 0 0.1415    0.9953         0 0.0352         0 0 

3 0 0 0.9923    0.9870         0 0.1377         0 

4 0 0 0 0.9900    0.0367         0 0.3467 

 

a decision can be taken in the first iteration, by calculating coefficients of the estimates 0

jQ  

and 1

jQ  : 

 1 2 3 4 5 6 7 

0

jQ  0.0161    0.1051    0.0003    0.0005    0.0899    0.2277    0.1375 

1

jQ  0.2445    0.0205    0.0532    0.0472    0.0038    0.0316    0.0943 

 

The decoded vector is then: 

 

( )0001101d iter  rst1 =   

This estimation results into a non zero syndrome, and iterations will continue. 

 

The decoded message in this first iteration is ( )000m iter  rst1 =  
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The second iteration starts with the calculation of the updated values of ijRδ : 

 

ijRδ  1 2 3 4 5 6 7 

1 -0.5765    0.8258         0 -0.5049         0 0 0 

2 0 -0.9208    0.6665         0 -0.7102         0 0 

3 0 0 -0.7058   -0.7136         0 0.9590         0 

4 0 0 0 0.2840   -0.3004         0 -0.9082 

 

 

   Values of 0

ijR  and 1

ijR  in the second iteration are now determined: 

 

0

ijR  1 2 3 4 5 6 7 

1 0.2117    0.9129         0 0.2476         0 0 0 

2 0 0.0396    0.8332         0 0.1449         0 0 

3 0 0 0.1471    0.1432         0 0.9795         0 

4 0 0 0 0.6420    0.3498         0 0.0459 
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1

ijR  1 2 3 4 5 6 7 

1     0.7883    0.0871    0 0.7524         0 0 0 

2 0 0.9604    0.1668         0 0.8551         0 0 

3 0 0 0.8529    0.8568         0 0.0205         0 

4 0 0 0 0.3580    0.6502         0 0.9541 

 

 

And then values of 0

ijQ  and 1

ijQ   can be updated: 

 

 

0

ijQ  1 2 3 4 5 6 7 

1 0.0748 0.1609         0 0.0046         0 0 0 

2 0 0.9799    0.0010         0 0.9420         0 0 

3 0 0 0.0291    0.0089         0 0.8623         0 

4 0 0 0 0.0008    0.8364         0 0.6533 

 

1

ijQ  1 2 3 4 5 6 7 

1     0.9252    0.8391         0 0.9954         0 0 0 

2 0 0.0201    0.9990         0 0.0580         0 0 

3 0 0 0.9709    0.9911         0 0.1377         0 

4 0 0 0 0.9992    0.1636         0 0.3467 
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a decision can be taken in the second iteration, by calculating coefficients of the estimates 

0

jQ  and 1

jQ  : 

 1 2 3 4 5 6 7 

0

jQ  0.0076    0.0147    0.0002    0.0001    0.0206    0.4169    0.0145 

1

jQ  0.3493    0.0073    0.0310    0.0760    0.0075    0.0014    0.1596 

 

The decoded vector is then: 

 

( )1001101d iter  nd2 =   

This estimation results into a non zero syndrome, and iterations will continue. 

The decoded message in this second iteration is ( )100m iter  nd2 = . 

The above described calculations can be also performed for the following iterations. The  

decoded vectors in the following iterations are: 

Third iteration: ( )1011101d iter rd3 = , decoded message ( )101m iter  rd3 =  

Fourth iteration: ( )1011100d iter th4 = , decoded message ( )001m iter  th4 = , successful 

decoding, syndrome is zero. 

 

In the case of the systematic graph, the decoded vectors in successive iterations are: 

first iteration: ( )1011000d iter rst1 = ,  

second iteration ( )1011011d iter nd2 = ,  

third iteration: ( )1011011d iter rd3 = ,  

fourth iteration: ( )1011000d iter th4 = ,  

fifth iteration: ( )10110101d iter th5 = ,  

sixth iteration: ( )1011101d iter th6 = , unsuccessful decoding in six iterations. 
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8.4) a) The decoder can determine after a little number of iterations the output vector,  

decoded bit by bit. The solution provided by the decoder is not a codeword, and there are 

also convergence problems, since the iterative decoding provides always the same 

decoded vector after a given number of solutions. It would reach the maximum number of 

iterations giving this solution at the end of the decoding. After a little number of iterations, 

the estimates for each bit are the following:  

 

 1 2 3 4 5 

0

jQ  0.1019    0.4091    0.0990    0.4091    0.1855 

1

jQ  0.0990    0.0091    0.1019 0.0091    0.0046 

 

The decoded vector is ( )00100d = , which is not a code vector. Estimates for bits 

1 and 3 are however quite close to each other, and slight differences in their values can 

make the decoded vector be one of two codewords that are ( )00000c1 =  (the 

transmitted codeword) and ( )00101c2 = . Estimates for bits at positions 2, 4 and 5 

are however very well defined.  

This performance can be seen by using the program codec_ldpc_P_8_4_ch8.m, which 

can be downloaded form the website of the book. 

b) The decoder can not be efficient for large number of iterations because of the 

characteristics of the code. Connections between symbol nodes and parity check nodes 

are not enough for effective belief propagation. 

 
 
 
 
 
 


